dc.creator | Garibaldi E. | |
dc.creator | Sobottka M. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:57:10Z | |
dc.date | 2015-11-26T14:50:51Z | |
dc.date | 2015-06-25T17:57:10Z | |
dc.date | 2015-11-26T14:50:51Z | |
dc.date.accessioned | 2018-03-28T22:02:12Z | |
dc.date.available | 2018-03-28T22:02:12Z | |
dc.identifier | | |
dc.identifier | Mathematical Biosciences. Elsevier Inc., v. 253, n. 1, p. 1 - 10, 2014. | |
dc.identifier | 255564 | |
dc.identifier | 10.1016/j.mbs.2014.03.015 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84900870987&partnerID=40&md5=79065faa90b7cc5f5bab5d1354719fde | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/87196 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/87196 | |
dc.identifier | 2-s2.0-84900870987 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1254283 | |
dc.description | This paper considers a two-dimensional logistic model to study populations with two genders. The growth behavior of a population is guided by two coupled ordinary differential equations given by a non-differentiable vector field whose parameters are the secondary sex ratio (the ratio of males to females at time of birth), inter-, intra- and outer-gender competitions, fertility and mortality rates and a mating function. For the case where there is no inter-gender competition and the mortality rates are negligible with respect to the density-dependent mortality, using geometrical techniques, we analyze the singularities and the basin of attraction of the system, determining the relationships between the parameters for which the system presents an equilibrium point. In particular, we describe conditions on the secondary sex ratio and discuss the role of the average number of female sexual partners of each male for the conservation of a two-sex species. © 2014 Elsevier Inc. | |
dc.description | 253 | |
dc.description | 1 | |
dc.description | 1 | |
dc.description | 10 | |
dc.description | Charnov, E.L., (1982) The Theory of Sex Allocation, , Princeton University Press, New Jersey | |
dc.description | Castillo-Chavez, C., Huang, W., The logistic equation revisited: the two-sex case (1995) Math. Biosci., 128, p. 299 | |
dc.description | Fisher, R.A., (1930) The Genetical Theory of Natural Selection, , Clarendon Press, Oxford | |
dc.description | Fredrickson, A.G., A mathematical theory of age structure in sexual populations: random mating and monogamous marriage models (1971) Math. Biosci., 10, p. 117 | |
dc.description | Le Galliard, J.F., Fitze, P.S., Ferrière, R., Clobert, J., Sex ratio bias, male aggression, and population collapse in lizards (2005) Proc. Nat. Acad. Sci. U.S.A., 102, p. 18231 | |
dc.description | Garibaldi, E., Sobottka, M., Average sex ratio and population maintenance cost (2011) SIAM J. Appl. Math., 71, p. 1009 | |
dc.description | Goodman, L.A., Population growth of the sexes (1953) Biometrics, 9, p. 212 | |
dc.description | Grayson, K.L., De Lisle, S.P., Jackson, J.E., Black, S.J., Crespi, E.J., Behavioral and physiological female responses to male sex ratio bias in a pond-breeding amphibian (2012) Front. Zool., 9, p. 1 | |
dc.description | Hadeler, K.P., Waldstätter, R., Wörz-Busekros, A., Models for pair formation in bisexual populations (1988) J. Math. Biol., 26, p. 635 | |
dc.description | Hamilton, W.D., Extraordinary sex ratios (1967) Science, 156, p. 477 | |
dc.description | Hesketh, T., Xing, Z.W., Abnormal sex ratios in human populations: causes and consequences (2006) Proc. Nat. Acad. Sci. U.S.A., 103, p. 13271 | |
dc.description | Hoppensteadt, F., (1975) Mathematical Theory of Populations: Demographics, Genetics and Epidemics, , SIAM, Philadelphia | |
dc.description | Kendall, D.G., Stochastic processes and population growth (1949) J. R. Stat. Soc. Ser. B Methodol., 11, p. 230 | |
dc.description | Melin, J., Does distribution theory contain means for extending Poincaré-Bendixon theory? (2004) J. Math. Anal. Appl., 303, p. 81 | |
dc.description | Michler, S.P.M., Nicolaus, M., Ubels, R., van der Velde, M., Both, C., Tinbergen, J.M., Komdeur, J., Do sex-specific densities affect local survival of free-ranging great tits? (2011) Behav. Ecol., 22, p. 869 | |
dc.description | Ranta, E., Kaitala, V., Lindström, J., Sex in space: population dynamic consequences (1999) Proc. R. Soc. Lond. Ser. B: Biol. Sci., 266, p. 1155 | |
dc.description | Rosen, K.H., Mathematical models for polygamous mating systems (1983) Math. Model., 4, p. 27 | |
dc.description | Trivers, R.L., Willard, D.E., Natural selection of parental ability to vary the sex ratio of offspring (1973) Science, 179, p. 90 | |
dc.description | Yang, K., Milner, F., The logistic, two-sex, age-structured population model (2009) J. Biol. Dyn., 3, p. 252 | |
dc.description | Yellin, J., Samuelson, P.A., A dynamical model for human population (1974) Proc. Nat. Acad. Sci. U.S.A., 71, p. 2813 | |
dc.language | en | |
dc.publisher | Elsevier Inc. | |
dc.relation | Mathematical Biosciences | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | A Nonsmooth Two-sex Population Model | |
dc.type | Artículos de revistas | |