dc.creatorGaribaldi E.
dc.creatorSobottka M.
dc.date2014
dc.date2015-06-25T17:57:10Z
dc.date2015-11-26T14:50:51Z
dc.date2015-06-25T17:57:10Z
dc.date2015-11-26T14:50:51Z
dc.date.accessioned2018-03-28T22:02:12Z
dc.date.available2018-03-28T22:02:12Z
dc.identifier
dc.identifierMathematical Biosciences. Elsevier Inc., v. 253, n. 1, p. 1 - 10, 2014.
dc.identifier255564
dc.identifier10.1016/j.mbs.2014.03.015
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84900870987&partnerID=40&md5=79065faa90b7cc5f5bab5d1354719fde
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87196
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87196
dc.identifier2-s2.0-84900870987
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254283
dc.descriptionThis paper considers a two-dimensional logistic model to study populations with two genders. The growth behavior of a population is guided by two coupled ordinary differential equations given by a non-differentiable vector field whose parameters are the secondary sex ratio (the ratio of males to females at time of birth), inter-, intra- and outer-gender competitions, fertility and mortality rates and a mating function. For the case where there is no inter-gender competition and the mortality rates are negligible with respect to the density-dependent mortality, using geometrical techniques, we analyze the singularities and the basin of attraction of the system, determining the relationships between the parameters for which the system presents an equilibrium point. In particular, we describe conditions on the secondary sex ratio and discuss the role of the average number of female sexual partners of each male for the conservation of a two-sex species. © 2014 Elsevier Inc.
dc.description253
dc.description1
dc.description1
dc.description10
dc.descriptionCharnov, E.L., (1982) The Theory of Sex Allocation, , Princeton University Press, New Jersey
dc.descriptionCastillo-Chavez, C., Huang, W., The logistic equation revisited: the two-sex case (1995) Math. Biosci., 128, p. 299
dc.descriptionFisher, R.A., (1930) The Genetical Theory of Natural Selection, , Clarendon Press, Oxford
dc.descriptionFredrickson, A.G., A mathematical theory of age structure in sexual populations: random mating and monogamous marriage models (1971) Math. Biosci., 10, p. 117
dc.descriptionLe Galliard, J.F., Fitze, P.S., Ferrière, R., Clobert, J., Sex ratio bias, male aggression, and population collapse in lizards (2005) Proc. Nat. Acad. Sci. U.S.A., 102, p. 18231
dc.descriptionGaribaldi, E., Sobottka, M., Average sex ratio and population maintenance cost (2011) SIAM J. Appl. Math., 71, p. 1009
dc.descriptionGoodman, L.A., Population growth of the sexes (1953) Biometrics, 9, p. 212
dc.descriptionGrayson, K.L., De Lisle, S.P., Jackson, J.E., Black, S.J., Crespi, E.J., Behavioral and physiological female responses to male sex ratio bias in a pond-breeding amphibian (2012) Front. Zool., 9, p. 1
dc.descriptionHadeler, K.P., Waldstätter, R., Wörz-Busekros, A., Models for pair formation in bisexual populations (1988) J. Math. Biol., 26, p. 635
dc.descriptionHamilton, W.D., Extraordinary sex ratios (1967) Science, 156, p. 477
dc.descriptionHesketh, T., Xing, Z.W., Abnormal sex ratios in human populations: causes and consequences (2006) Proc. Nat. Acad. Sci. U.S.A., 103, p. 13271
dc.descriptionHoppensteadt, F., (1975) Mathematical Theory of Populations: Demographics, Genetics and Epidemics, , SIAM, Philadelphia
dc.descriptionKendall, D.G., Stochastic processes and population growth (1949) J. R. Stat. Soc. Ser. B Methodol., 11, p. 230
dc.descriptionMelin, J., Does distribution theory contain means for extending Poincaré-Bendixon theory? (2004) J. Math. Anal. Appl., 303, p. 81
dc.descriptionMichler, S.P.M., Nicolaus, M., Ubels, R., van der Velde, M., Both, C., Tinbergen, J.M., Komdeur, J., Do sex-specific densities affect local survival of free-ranging great tits? (2011) Behav. Ecol., 22, p. 869
dc.descriptionRanta, E., Kaitala, V., Lindström, J., Sex in space: population dynamic consequences (1999) Proc. R. Soc. Lond. Ser. B: Biol. Sci., 266, p. 1155
dc.descriptionRosen, K.H., Mathematical models for polygamous mating systems (1983) Math. Model., 4, p. 27
dc.descriptionTrivers, R.L., Willard, D.E., Natural selection of parental ability to vary the sex ratio of offspring (1973) Science, 179, p. 90
dc.descriptionYang, K., Milner, F., The logistic, two-sex, age-structured population model (2009) J. Biol. Dyn., 3, p. 252
dc.descriptionYellin, J., Samuelson, P.A., A dynamical model for human population (1974) Proc. Nat. Acad. Sci. U.S.A., 71, p. 2813
dc.languageen
dc.publisherElsevier Inc.
dc.relationMathematical Biosciences
dc.rightsfechado
dc.sourceScopus
dc.titleA Nonsmooth Two-sex Population Model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución