dc.creatorRamos-Caro J.
dc.creatorPedraza J.F.
dc.creatorLetelier P.S.
dc.date2011
dc.date2015-06-30T20:30:59Z
dc.date2015-11-26T14:50:45Z
dc.date2015-06-30T20:30:59Z
dc.date2015-11-26T14:50:45Z
dc.date.accessioned2018-03-28T22:02:03Z
dc.date.available2018-03-28T22:02:03Z
dc.identifier
dc.identifierMonthly Notices Of The Royal Astronomical Society. , v. 414, n. 4, p. 3105 - 3116, 2011.
dc.identifier358711
dc.identifier10.1111/j.1365-2966.2011.18618.x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79959822297&partnerID=40&md5=4d6fae1f77d1610f15706b8ea39bd755
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108187
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108187
dc.identifier2-s2.0-79959822297
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254253
dc.descriptionWe study the motion of test particles around a centre of attraction represented by a monopole (with and without spheroidal deformation) surrounded by a ring, given as a superposition of Morgan and Morgan discs. We deal with two kinds of bounded orbits: (i) equatorial circular orbits and (ii) general three-dimensional orbits. The first case provides a method to perform a linear stability analysis of these structures by studying the behaviour of vertical and epicyclic frequencies as functions of the mass ratio, the size of the ring and/or the quadrupolar deformation. In the second case, we study the influence of these parameters in the regularity or chaoticity of motion. We find that there is a close connection between linear stability (or instability) of equatorial circular orbits and regularity (or chaoticity) of the three-dimensional motion. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
dc.description414
dc.description4
dc.description3105
dc.description3116
dc.descriptionArnold, L., Schneider, J., (2004) A&A, 420, p. 1153
dc.descriptionArnold, L., Schneider, J., (2006) eds, Proc. IAU Colloq. 200, Direct Imaging of Exoplanets: Science & Techniques. Cambridge Univ. Press, Cambridge, p. 105. , in Aime C., Vakili F.
dc.descriptionBarnes, J.W., Fortney, J.J., (2004) ApJ, 616, p. 1193
dc.descriptionBenet, L., Merlo, O., (2009) Celest. Mech. Dynamical Astron., 103, p. 209
dc.descriptionBenet, L., Seligman, T.H., (2000) Phys. Lett. A, 273, p. 331
dc.descriptionBinney, J., Tremaine, S., (2008) Galactic Dynamics, 2nd edn, , Princeton Univ. Press, Princeton, NJ
dc.descriptionCharnoz, S., (2009) Icarus, 201, p. 191
dc.descriptionCharnoz, S., Salmon, J., Crida, A., (2010) Nat, 465, p. 752
dc.descriptionCuzzi, J.N., (2010) Sci, 327, p. 1470
dc.descriptionDougherty, M.K., Esposito, L.W., Krimigis, T., (2009) Saturn from Cassini-Huygens, , Springer, New York
dc.descriptionEllis, D.M., Wessen, R.R., Cuzzi, J.N., (2007) Planetary Ring Systems, , Springer-Praxis Publishing, Berlin
dc.descriptionGoldreich, P., Tremaine, S., (1979) Nat, 277, p. 97
dc.descriptionGonzález, G.A., Reina, J.I., (2006) MNRAS, 371, p. 1873
dc.descriptionGreenberg, R., Brahic, A., (1984) Planetary Rings, , The University of Arizona Press, Tucson
dc.descriptionGuéron, E., Letelier, P.S., (2001) Phys. Rev. E, 63, p. 035201
dc.descriptionHénon, M., (1982) Physica D, 5, p. 412
dc.descriptionHolsapple, K.A., (2001) Icarus, 154, p. 432
dc.descriptionHunter, C., (2005) Ann. New York Acad. Sci., 1045, p. 120
dc.descriptionHunter, C., Toomre, A., (1969) ApJ, 155, p. 747
dc.descriptionJiang, Z., (2000) MNRAS, 319, p. 1067
dc.descriptionJiang, Z., Moss, D., (2002) MNRAS, 331, p. 117
dc.descriptionJiang, Z., Ossipkov, L., (2007) MNRAS, 379, p. 1133
dc.descriptionJones, G.H., (2008) Sci, 319, p. 1380
dc.descriptionKalnajs, A.J., (1972) ApJ, 175, p. 63
dc.descriptionKuzmin, G.G., (1956) Astron. Zh., 33, p. 27
dc.descriptionLandau, L.D., Lifshitz, E.M., (1987) Fluid Mechanics 2nd edn, , Pergamon Press, Oxford
dc.descriptionLemos, J.P.S., Letelier, P.S., (1994) Phys. Rev., 49, p. 5135
dc.descriptionLetelier, P.S., (2007) MNRAS, 381, p. 1031
dc.descriptionLongaretti, P.Y., (1992) Planetary Ring Dynamics: From Boltzmann's Equation to Celestial Dynamics, Interrelations between Physics and Dynamics for Minor Bodies in the Solar System, p. 453. , in Froeschlé C., ed., Editions Frontières, Gif-sur-Yvette
dc.descriptionLora-Clavijo, F.D., Ospina-Henao, P.A., Pedraza, J.F., (2010) Phys. Rev. D, 82, p. 084005
dc.descriptionLynden Bell, D., (1962) MNRAS, 123, p. 447
dc.descriptionMadan, R.N., (1963) Chua's Circuit: A Paradigm for Chaos, , World Scientific Press, Singapore
dc.descriptionMatsumoto, T., Chua, L., Komuro, M., (1985) IEEE Trans. Circuits Syst., 32, p. 797
dc.descriptionMerlo, O., Benet, L., (2007) Celestial Mech. Dynamical Astron., 97, p. 49
dc.descriptionMestel, L., (1963) MNRAS, 126, p. 553
dc.descriptionMorgan, T., Morgan, L., (1969) Phys. Rev., 183, p. 1097
dc.descriptionMurray, C.D., (2005) Nat, 437, p. 1326
dc.descriptionMurray, C.D., (2008) Nat, 453, p. 739
dc.descriptionOhta, Y., Taruya, A., Suto, Y., (2009) ApJ, 690, p. 1
dc.descriptionPedraza, J.F., Ramos-Caro, J., González, G.A., (2008) MNRAS, 390, p. 1587
dc.descriptionPorco, C.C., (2005) Sci, 307, p. 1226
dc.descriptionRamos-Caro, J., López-Suspez, F., González, G.A., (2008) MNRAS, 386, p. 440
dc.descriptionRayleigh, L., (1916) Proc. R. Soc. London A, 93, p. 148
dc.descriptionSaa, A., (2000) Phys. Lett. A, 269, p. 204
dc.descriptionSaa, A., Venegeroles, R., (1999) Phys. Lett. A, 259, p. 201
dc.descriptionSemerák, O., Suková, P., (2010) MNRAS, 404, p. 545
dc.descriptionSicardy, B., (2006) Lecture Notes in Physics, Vol. 682, Dynamics of Planetary Rings, Dynamics of Finite Size Celestial Bodies and Rings, p. 183. , in Souchay A., ed., Springer-Verlag, Berlin
dc.descriptionSmith, B.A., (1981) Sci, 212, p. 163. , (The Voyager Imaging Team)
dc.descriptionSmith, B.A., (1982) Sci, 215, p. 504. , (The Voyager Imaging Team)
dc.descriptionToomre, A., (1963) ApJ, 138, p. 385
dc.descriptionToomre, A., (1964) ApJ, 139, p. 1217
dc.descriptionTresaco, E., Ferrer, S., (2010) Celest. Mech. Dynamical Astron., 107, p. 337
dc.descriptionVogt, D., Letelier, P.S., (2009) MNRAS, 396, p. 1487
dc.languageen
dc.publisher
dc.relationMonthly Notices of the Royal Astronomical Society
dc.rightsaberto
dc.sourceScopus
dc.titleMotion Around A Monopole + Ring System - I. Stability Of Equatorial Circular Orbits Versus Regularity Of Three-dimensional Motion
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución