dc.creatorGiesbrecht M.
dc.creatorBottura C.P.
dc.date2011
dc.date2015-06-30T20:30:42Z
dc.date2015-11-26T14:50:28Z
dc.date2015-06-30T20:30:42Z
dc.date2015-11-26T14:50:28Z
dc.date.accessioned2018-03-28T22:01:40Z
dc.date.available2018-03-28T22:01:40Z
dc.identifier9781612843735
dc.identifierProceedings Of 4th International Workshop On Advanced Computational Intelligence, Iwaci 2011. , v. , n. , p. 742 - 749, 2011.
dc.identifier
dc.identifier10.1109/IWACI.2011.6160106
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84858780440&partnerID=40&md5=b611b74d53bdc04318291f80f132637e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108163
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108163
dc.identifier2-s2.0-84858780440
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254160
dc.descriptionIn this paper a new method to generate white noise is proposed. This method is based on viewing the white noise generation as an optimization problem and solving this problem with an immuno inspired algorithm. The white noise approximation obtained with the proposed method is nearer the ideal white noise than a series generated with a known pseudo random generator. The signal obtained with the new method was also applyed to discrete time series state space realization problem implying on results improvement. © 2011 IEEE.
dc.description
dc.description
dc.description742
dc.description749
dc.descriptionFaurre, P.L., Stochastic realization algorithms (1976) System Identification: Advances and Case Studies, 128, pp. 1-25
dc.descriptionGevers, M.R., Kailath, T., An innovations approach to least squares estimation part vi - Discrete-time innovations representations and recursive estimation (1973) IEEE Transactions on Automatic Control, 18, pp. 588-600. , December
dc.descriptionKailath, T., Geesey, R.A., An innovations approach to least squares estimation part iv - Recursive estimation given lumped covariance functions (1971) IEEE Transactions on Automatic Control, 16, pp. 720-727. , December
dc.descriptionAnderson, B.D.O., Moore, J.B., Loo, S.G., Spectral factorization of time varying covariance functions (1969) IEEE Transactions on Information Theory, 15, pp. 550-557. , September
dc.descriptionKalman, R.E., A new approach to linear filtering and prediction problems (1960) Transactions of the ASME-Journal of Basic Engineering, (82), pp. 35-45
dc.descriptionAoki, M., (1987) State Space Modeling of Time Series, , Springer-Verlag
dc.descriptionHo, B.L., Kalman, R.E., Effective construction of linear state-variable models from input-output functions (1966) Regelungstechnikzeitschrift für Steuern, Regeln und Automatisieren, 14 (12), pp. 545-548
dc.descriptionTobar, J., Bottura, C.P., Giesbrecht, M., Computational modeling of multivariable non-stationary time series in the state space by the aoki var algorithm Proceedings of the 2010 World Congress on Engineering, 2010
dc.descriptionBarreto, G., (2002) Modelagem Computacional Distribuída e Paralela de Sistemas e de Séries Temporais Multivariáveis No Espaço de Estado, , PhD thesis, Unicamp
dc.descriptionBarreto, G., Bottura, C.P., Revisitando os fundamentos de identificação multivariável no espaço de estados ii - Idéias básicas para o método de subespaços Proceedings of 2nd DINCON, August 2003
dc.descriptionBottura, C.P., Barreto, G., Revisitando os fundamentos de identificação multivariável no espaço de estados i - Realização de estado e operador de hankel Proceedings of 2nd DINCON, August 2003
dc.descriptionKatayama, T., (2005) Subspace Methods for System Identification: A Realization Approach, , Leipzig: Springer Verlag
dc.descriptionGiesbrecht, M., Bottura, C.P., An immuno-inspired approach to find the steady state solution of riccati equations not solvable by schur method (2010) Proceedings of the 2010 IEEE World Congress on Computational Inteligence, pp. 1-8. , July
dc.descriptionDe Castro, L.N., Timmis, J., (2002) Artificial Immune Systems - A New Computational Intelligence Approach, , Springer Verlag
dc.descriptionDe Castro, L.N., Von Zuben, F.J., The clonal selection algorithm with engineering applications (2000) Workshop Proceedings of the GECCO 2000, pp. 36-37. , July
dc.descriptionDe Castro, L.N., Von Zuben, F.J., Learning and optimization using the clonal selection principle (2002) IEEE Transactions on Evolutionary Computation, 6, pp. 239-251. , June
dc.descriptionCutello, V., Nicosia, G., An immunological approach to combinatorial optimization problems (2002) Advances in Artifical Intelligence IBERAMIA, 252, pp. 361-370
dc.descriptionCutello, V., Narizi, G., Nicosia, G., Pavone, M., Real coded clonal selection algortithm for global numerical optimization using a new inversely proportional hypermutation operator (2006) 21st Annual ACM Symposium on Applied Computing, SAC 2006, pp. 950-954
dc.descriptionCutello, V., Narzisi, G., Nicosia, G., Pavone, M., Clonal selection algorithms: A comparative case study usign effective mutation potentials (2005) 4th Intl. Conference on Artificial Immune Systems ICARIS 2005, pp. 13-28
dc.languageen
dc.publisher
dc.relationProceedings of 4th International Workshop on Advanced Computational Intelligence, IWACI 2011
dc.rightsfechado
dc.sourceScopus
dc.titleAn Immuno Inspired Approach To Generate White Noise
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución