dc.creatorDe Oliveira Coraucci G.
dc.creatorFruett F.
dc.creatorFinco S.
dc.date2011
dc.date2015-06-30T20:30:44Z
dc.date2015-11-26T14:50:19Z
dc.date2015-06-30T20:30:44Z
dc.date2015-11-26T14:50:19Z
dc.date.accessioned2018-03-28T22:01:31Z
dc.date.available2018-03-28T22:01:31Z
dc.identifier9781424492886
dc.identifierProceedings Of Ieee Sensors. , v. , n. , p. 1526 - 1529, 2011.
dc.identifier
dc.identifier10.1109/ICSENS.2011.6127077
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84856899957&partnerID=40&md5=2eb18247b6dcf6c45049505d38fb6999
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108166
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108166
dc.identifier2-s2.0-84856899957
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254136
dc.descriptionThis work presents a technique for temperature compensation of Silicon Piezoresistive Pressure Sensors (PPSs) based on a Proportional to Absolute Temperature (PTAT) Bias-Current circuit (I PTAT). This technique is applied on the Multi-Stage Current-Mode Piezoresistive Pressure Sensor based on a 3-Terminal Pressure Sensor (3-TPS) that recently has been being studied as an alternative to the conventional Wheatstone Bridge and Transversal PPSs. The experimental maximum differential sensitivity of the sensor output current relative change, for 500μA constant bias current, amounts to 0.64%/psi @20°C. The sensor output current sensitivity temperature dependence, without compensation, amounts to 0.06μA/°C over a range from 20°C to 80°C. After compensation, the experimental results show a maximum deviation of 1.5% within the full scale output span. This efficient compensation was achieved using a PTAT bias current whose Temperature Coefficient (TC) amounts to 0.06μA/°C. © 2011 IEEE.
dc.description
dc.description
dc.description1526
dc.description1529
dc.descriptionIEEE SENSORS Council
dc.descriptionGridchin, A.V., A three-terminal silicon piezotransducer: General consideration and estimation of sensitivity (2003) Electron Devices and Materials, 4th Annual 2003 Siberian Russian Workshop, pp. 58-63
dc.descriptionGowrishetty, U., Single element 3-terminal pressure sensors: A new approach to pressure sensing and its comparison to the half bridge sensors (2009) Solid-State Sensors, Transducers 2009, pp. 1134-1137
dc.descriptionPopovic, R.S., (1991) Hall Effect Devices: Magnetic Sensors and Characterization of Semiconductors, , Adam Hilger, UK
dc.descriptionCoraucci, G., Fruett, F., Silicon multi-stage current-mode piezoresistive pressure sensor (2010) Solid-State Sensors, IEEE Sensors 2010, pp. 1770-1774
dc.descriptionKanda, Y., Piezoresistance Effect of Silicon (1991) Sensors and Actuators A, 28, pp. 83-91
dc.description(2004) Temperature Compensation Methods for the Motorola X-ducer Pressure Sensor Element, , Freescale Semicondutors, Application Note-AN840
dc.description(2005) Dynamic Temperature Compensation for Pressure Sensors, , Intersil Application Note - AN168
dc.descriptionAkbar, M., A fully integrated temperature compensation technique for piezoresistive pressure sensors (1993) IEEE Transactions on Intrumentation and Measurement, 42 (3), pp. 771-775
dc.descriptionAljancic, U., Temperature effects modeling in silicon piezoresistive pressure sensor (2002) IEEE Melecon, pp. 36-40
dc.descriptionFruett, F., Meijer, G.C.M., (2002) The Piezojunction Effect in Silicon Integrated Circuits and Sensors, , Kluwer Academic Publishers, Boston
dc.descriptionGray, P.R., (2001) Analysis and Design of Analog Integrated Circuits, , John Wiley and Sons Inc, USA
dc.descriptionCoraucci, G.O., Fruett, F., Study, design and microfabrication of a new CMOS compatible multi-terminal pressure sensor with enhanced sensitivity (2010) Sensors and Actuators A
dc.languageen
dc.publisher
dc.relationProceedings of IEEE Sensors
dc.rightsfechado
dc.sourceScopus
dc.titleSilicon Multi-stage Current-mode Piezoresistive Pressure Sensor With Analog Temperature Compensation
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución