dc.creatorCosta F.S.
dc.creatorCapelas De Oliveira E.
dc.date2011
dc.date2015-06-30T20:28:26Z
dc.date2015-11-26T14:50:02Z
dc.date2015-06-30T20:28:26Z
dc.date2015-11-26T14:50:02Z
dc.date.accessioned2018-03-28T22:01:11Z
dc.date.available2018-03-28T22:01:11Z
dc.identifier9781612847740
dc.identifier2011 International Conference On Multimedia Technology, Icmt 2011. , v. , n. , p. 2473 - 2476, 2011.
dc.identifier
dc.identifier10.1109/ICMT.2011.6002434
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80052921860&partnerID=40&md5=5244aeb0b0733df6ba29e0bedb1c92aa
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108075
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108075
dc.identifier2-s2.0-80052921860
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254064
dc.descriptionWe investigate the fractional behavior of the integrators associated with a fractional diffusion equation in an interface, in two different geometries, a wall and a sphere, by means of a new relation between Caputo derivatives and non integer integrators. The behavior of such integrators is shown using Bode diagrams calculated for a limited spectral range. At high frequencies, the fractional behavior is approximated by a non integer order integrator. As a particular case we recover some recent results. © 2011 IEEE.
dc.description
dc.description
dc.description2473
dc.description2476
dc.descriptionUniversity of Louisville,Ningbo University,Zhejiang Sci-Tech University,Communication University of China,Georgia State University
dc.descriptionCaputo, M., The splitting of the free oscillations of the Earth caused by rheology (1990) Rend. Fis. Acc. Lincei, 1, pp. 119-125
dc.descriptionLuchko, Y.F., Rivero, M., Trujillo, J.J., Velasco, M.P., Fractional models, non-locality, and complex systems (2010) Comp. and Math. Appl., 59, pp. 1048-1056
dc.descriptionMagin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.J., On the fractional signals and systems (2011) Signal Processing, 91, pp. 350-371
dc.descriptionMainardi, F., Mura, A., Pagnini, G., The M-Wright function in timefractional diffusion process: Tutorial survey (2010) Int. J. Diff. Eq., 2010. , ID 104505
dc.descriptionBarbosa, R.S., (1999) Algoritmos de Controlo de Ordem Não-inteira, , Master of Science, Faculdade de Engenharia da Universidade do Porto, Universidade do Porto
dc.descriptionOrtigueira, M.D., Tenreiro MacHado, J., Fractional signal processing and applications (2003) Signal Processing, 33, pp. 2285-2286
dc.descriptionTenreiro MacHado, J., Kiryakova, V., Mainardi, F., Recent history of fractional calculus (2011) Nonlinear Sci. Num. Sim., 16, pp. 1140-1153
dc.descriptionPoinot, T., Trigeassou, J.-C., A method for modelling and simulation of fractional systems (2003) Signal Processing, 83, pp. 2319-2333
dc.descriptionGabano, J.D., Poinot, T., Fractional modelling and identification of thermal systems (2011) Signal Processing, 91, pp. 531-541
dc.descriptionLin, J., Point, T., Trigeassou, J.C., Coirault, P., Parameter estimation of fractional systems. Application to heat transfer (2001) ECC 2001, European Control Conference, pp. 2644-2649. , Porto, Portugal
dc.descriptionPoint, T., Trigeassou, J.C., Parameter estimation of fractional models application to the modeling of diffusive systems (2002) 15th IFAC World Congress, , Barcelona, Spain
dc.descriptionBenchellal, A., Point, T., Trigeassou, J.-C., Approximation and identification of diffusive interfaces by fractional models (2006) Signal Processing, 86, pp. 2712-2727
dc.languageen
dc.publisher
dc.relation2011 International Conference on Multimedia Technology, ICMT 2011
dc.rightsfechado
dc.sourceScopus
dc.titleFractional Thermal Systems
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución