dc.creatorCalderoni D.R.
dc.creatorGilioli R.
dc.creatorMunhoz A.L.J.
dc.creatorFilho R.M.
dc.creatorZavaglia C.A.C.
dc.creatorLambert C.S.
dc.creatorLopes E.S.N.
dc.creatorToro I.F.C.
dc.creatorKharmandayan P.
dc.date2014
dc.date2015-06-25T17:57:12Z
dc.date2015-11-26T14:49:44Z
dc.date2015-06-25T17:57:12Z
dc.date2015-11-26T14:49:44Z
dc.date.accessioned2018-03-28T22:00:50Z
dc.date.available2018-03-28T22:00:50Z
dc.identifier1028650
dc.identifierActa Cirurgica Brasileira. , v. 29, n. 9, p. 579 - 587, 2014.
dc.identifierSociedade Brasileira para o Desenvolvimento de Pesquisa em Cirurgia
dc.identifier10.1590/S0102-8650201400150005
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84907288019&partnerID=40&md5=e6b0873fa5930609aec4131fec228187
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87209
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87209
dc.identifier2-s2.0-84907288019
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253993
dc.descriptionPURPOSE: To investigate the osseointegration properties of prototyped implants with tridimensionally interconnected pores made of the Ti6Al4V alloy and the influence of a thin calcium phosphate coating.METHODS: Bilateral critical size calvarial defects were created in thirty Wistar rats and filled with coated and uncoated implants in a randomized fashion. The animals were kept for 15, 45 and 90 days. Implant mechanical integration was evaluated with a push-out test. Bone-implant interface was analyzed using scanning electron microscopy.RESULTS: The maximum force to produce initial displacement of the implants increased during the study period, reaching values around 100N for both types of implants. Intimate contact between bone and implant was present, with progressive bone growth into the pores. No significant differences were seen between coated and uncoated implants.CONCLUSION: Adequate osseointegration can be achieved in calvarial reconstructions using prototyped Ti6Al4V Implants with the described characteristics of surface and porosity.
dc.description29
dc.description9
dc.description579
dc.description587
dc.descriptionSanan, A., Haines, S.J., Repairing holes in the head: A history of cranioplasty (1997) Neurosurgery, 40 (3), pp. 588-603. , Mar, PMID: 9055300
dc.descriptionBandyopadhyay, A., Espana, F., Balla, V.K., Bose, S., Ohgami, Y., Davies, N.M., Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants (2010) Acta Biomater, 6 (4), pp. 1640-1648. , May
dc.descriptionVehof, J.W.M., Haus, M.T.U., De Ruijter, A.E., Spauwen, P.H.M., Jansen, J.A., Bone formation in transforming growth factor beta-I-loaded titanium fiber mesh implants (2002) Clin Oral Implants Res, 13 (1), pp. 94-102. , Mar
dc.descriptionPonader, S., Von Wilmowsky, C., Widenmayer, M., Lutz, R., Heinl, P., Körner, C., Singer, R.F., Schlegel, K.A., In vivo performance of selective electron beam-melted Ti-6Al-4V structures (2010) J Biomed Mater Res A, 92 (1), pp. 56-62. , Jan
dc.descriptionWarnke, P.H., Douglas, T., Wollny, P., Sherry, E., Steiner, M., Galonska, S., Becker, S.T., Sivananthan, S., Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering (2009) Tissue Eng Part C Methods, 15 (2), pp. 115-124. , Jul
dc.descriptionNeovius, E., Engstrand, T., Craniofacial reconstruction with bone and biomaterials: Review over the last 11 years (2010) J Plast Reconstr Aesthet Surg, 63 (10), pp. 1615-1623. , Oct
dc.descriptionCabraja, M., Klein, M., Lehmann, T.-N., Long-term results following titanium cranioplasty of large skull defects (2009) Neurosurg Focus, 26 (6), p. E10. , Jul
dc.descriptionKuttenberger, J.J., Hardt, N., Long-term results following reconstruction of craniofacial defects with titanium micro-mesh systems (2001) J Craniomaxillofac Surg, 29 (2), pp. 75-81. , Apr
dc.descriptionJoffe, J., Harris, M., Kahugu, F., Nicoll, S., A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome (1999) Br J Neurosurg, 13 (6), pp. 576-580. , Dec, PMID: 10715726
dc.descriptionDe Jonge, L.T., Leeuwenburgh, S.C.G., Wolke, J.G.C., Jansen, J.A., Organicinorganic surface modifications for titanium implant surfaces (2008) Pharm Res, 25 (10), pp. 2357-2369. , Oct
dc.descriptionDhert, W.J., Klein, C.P., Jansen, J.A., Van Der Velde, E.A., Vriesde, R.C., Rozing, P.M., De Groot, K., A histological and histomorphometrical investigation of fluorapatite, magnesiumwhitlockite, and hydroxylapatite plasma-sprayed coatings in goats (1993) J Biomed Mater Res, 27 (1), pp. 127-138. , Jan
dc.descriptionSøballe, K., Hansen, E.S., Brockstedt-Rasmussen, H., Hjortdal, V.E., Juhl, G.I., Pedersen, C.M., Hvid, I., Bünger, C., Gap healing enhanced by hydroxyapatite coating in dogs (1991) Clin Orthop Relat Res, (272), pp. 300-307. , Nov, PMID: 1657476
dc.descriptionGoiato, M.C., Santos, M.R., Pesqueira, A.A., Moreno, A., Dos Santos, D.M., Haddad, M.F., Prototyping for surgical and prosthetic treatment (2011) J Craniofac Surg, 22 (3), pp. 914-917. , May
dc.descriptionMangano, C., Piattelli, A., Raspanti, M., Mangano, F., Cassoni, A., Iezzi, G., Shibli, J.A., Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series (2011) Lasers Med Sci, 26 (1), pp. 133-138. , Jan
dc.descriptionBosch, C., Melsen, B., Vargervik, K., Importance of the critical-size bone defect in testing bone-regenerating materials (1998) J Craniofac Surg, 9 (4), pp. 310-316. , PMID: 9780924
dc.descriptionAkagawa, Y., Abe, Y., Titanium: The ultimate solution or an evolutionary step? (2003) Int J Prosthodont, 16, pp. 28-29. , PMID: 14661700
dc.descriptionChim, H., Schantz, J.-T., New frontiers in calvarial reconstruction: Integrating computer-assisted design and tissue engineering in cranioplasty (2005) Plast Reconstr Surg, 116 (6), pp. 1726-1741. , Nov
dc.descriptionJones, L., Thomsen, J.S., Mosekilde, L., Bosch, C., Melsen, B., Biomechanical evaluation of rat skull defects, 1, 3, and 6 months after implantation with osteopromotive substances (2007) J Craniomaxillofac Surg, 35 (8), pp. 350-357. , Dec
dc.descriptionVajgel, A., Mardas, N., Farias, B.C., Petrie, A., Cimões, R., Donos, N., A systematic review on the critical size defect model (2014) Clin Oral Implants Res, 25 (8), pp. 879-893. , Aug
dc.descriptionFrosch, K.-H., Barvencik, F., Lohmann, C.H., Viereck, V., Siggelkow, H., Breme, J., Dresing, K., Stürmer, K.M., Migration, matrix production and lamellar bone formation of human osteoblast-like cells in porous titanium implants (2002) Cells Tissues Organs, 170 (4), pp. 214-227. , Jan
dc.descriptionDhert, W.J., Verheyen, C.C., Braak, L.H., De Wijn, J.R., Klein, C.P., De Groot, K., Rozing, P.M., A finite element analysis of the push-out test: Influence of test conditions (1992) J Biomed Mater Res, 26 (1), pp. 119-130
dc.descriptionBabiker, H., Ding, M., Sandri, M., Tampieri, A., Overgaard, S., The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants (2012) J Biomed Mater Res B Appl Biomater, 100 (3), pp. 759-766. , May
dc.descriptionChung, C.-J., Su, R.-T., Chu, H.-J., Chen, H.-T., Tsou, H.-K., He, J.-L., Plasma electrolytic oxidation of titanium and improvement in osseointegration (2013) J Biomed Mater Res B Appl Biomater, 101 (6), pp. 1023-1030. , Aug
dc.descriptionCacciafesta, V., Dalstra, M., Bosch, C., Melsen, B., Andreassen, T.T., Growth hormone treatment promotes guided bone regeneration in rat calvarial defects (2001) Eur J Orthod, 23 (6), pp. 733-740. , Dec
dc.descriptionSawyer, A.A., Song, S.J., Susanto, E., Chuan, P., Lam, C.X.F., Woodruff, M.A., Hutmacher, D.W., Cool, S.M., The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2 (2009) Biomaterials, 30 (13), pp. 2479-2488. , May
dc.descriptionZhao, J., Shen, G., Liu, C., Wang, S., Zhang, W., Zhang, X., Zhang, X., Zhang, Z., Jiang X. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds (2012) Tissue Eng Part A, 18 (1-2), pp. 185-197. , Jan
dc.descriptionYeo, A., Wong, W.J., Teoh, S.-H., Surface modification of PCLTCP scaffolds in rabbit calvaria defects: Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns (2010) J Biomed Mater Res A, 93 (4), pp. 1358-1367. , Jul
dc.descriptionGoyenvalle, E., Aguado, E., Nguyen, J.-M., Passuti, N., Le Guehennec, L., Layrolle, P., Daculsi, G., Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating (2006) Biomaterials, 27 (7), pp. 1119-1128. , Mar
dc.descriptionLi, J., Habibovic, P., Yuan, H., Van Den Doel, M., Wilson, C.E., De Wijn, J.R., Van Blitterswijk, C.A., De Groot, K., Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate composite (2007) Biomaterials, 28 (29), pp. 4209-4218. , Oct
dc.descriptionOhgushi, H., Okumura, M., Tamai, S., Shors, E.C., Caplan, A.I., Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: A comparative histomorphometric study of ectopic bone formation (1990) J Biomed Mater Res, 24 (12), pp. 1563-1570. , Dec
dc.descriptionKlein, C.P., Patka, P., Wolke, J.G., De Blieck-Hogervorst, J.M., De Groot, K., Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and alphatricalcium phosphate (1994) Biomaterials, 15 (2), pp. 146-150. , Jan
dc.descriptionWheeler, D.L., Campbell, A.A., Graff, G.L., Miller, G.J., Technical Note Histological and biomechanical evaluation of calcium phosphate coatings applied through surface-induced mineralization to porous titanium implants (1997) J Biomed Mater Res, 34 (4), pp. 539-543. , Mar
dc.descriptionLopez-Heredia, M., Sohier, J., Gaillard, C., Quillard, S., Dorget, M., Layrolle, P., Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering (2008) Biomaterials, 29 (17), pp. 2608-2615. , Jul
dc.descriptionWang, C., Karlis, G.A., Anderson, G.I., Dunstan, C.R., Carbone, A., Berger, G., Ploska, U., Zreiqat, H., Bone growth is enhanced by novel bioceramic coatings on Ti alloy implants (2009) J Biomed Mater Res A, 90 (2), pp. 419-428. , Aug
dc.descriptionBorsari, V., Fini, M., Giavaresi, G., Rimondini, L., Consolo, U., Chiusoli, L., Salito, A., Giardino, R., Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromised cortical and trabecular bone: In vivo comparative study on young, aged, and estrogen-deficient sheep (2007) J Orthoped Res, 25 (9), pp. 1250-1260. , Sep
dc.descriptionWalschot, L.H.B., Aquarius, R., Schreurs, B.W., Verdonschot, N., Buma, P., Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: In vivo study in a nonloaded goat model (2012) J Biomed Mater Res B Appl Biomater, 100 (6), pp. 1483-1489
dc.descriptionHirota, M., Hayakawa, T., Yoshinari, M., Ametani, A., Shima, T., Monden, Y., Ozawa, T., Tohnai, I., Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation (2012) Int J Oral Maxillofac Surg, 41 (10), pp. 1304-1309. , Oct
dc.descriptionKarageorgiou, V., Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis (2005) Biomaterials, 26 (27), pp. 5474-5491. , Sep
dc.descriptionWennerberg, A., Albrektsson, T., Effects of titanium surface topography on bone integration: A systematic review (2009) Clin Oral Implants Res, 20, pp. 172-184. , Sep
dc.descriptionSurmenev, R.A., Surmeneva, M.A., Ivanova, A.A., Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis - A review (2014) Acta Biomater, 10 (2), pp. 557-579. , Mar
dc.publisher
dc.relationActa Cirurgica Brasileira
dc.rightsfechado
dc.sourceScopus
dc.titlePaired Evaluation Of Calvarial Reconstruction With Prototyped Titanium Implants With And Without Ceramic Coating
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución