dc.creatorBraga M.F.
dc.creatorMacHado J.B.
dc.creatorCampello R.J.G.B.
dc.creatorDo Amaral W.C.
dc.date2011
dc.date2015-06-30T20:28:02Z
dc.date2015-11-26T14:49:40Z
dc.date2015-06-30T20:28:02Z
dc.date2015-11-26T14:49:40Z
dc.date.accessioned2018-03-28T22:00:45Z
dc.date.available2018-03-28T22:00:45Z
dc.identifier9781457701252
dc.identifier2011 19th Mediterranean Conference On Control And Automation, Med 2011. , v. , n. , p. 1052 - 1058, 2011.
dc.identifier
dc.identifier10.1109/MED.2011.5983003
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80052352457&partnerID=40&md5=7641df68723be23c25d07b5fab5ceaa7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108041
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108041
dc.identifier2-s2.0-80052352457
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253976
dc.descriptionAn improved approach to determine exact search directions for the optimization of Volterra models based on Generalized Orthonormal Bases of Functions (GOBF) is proposed. The proposed approach extends the work in [7], where a novel, exact technique for optimizing the GOBF parameters (poles) for Volterra models of any order was presented. The proposed extensions take place in two different ways: (i) the formulation here is derived in such a way that each multidimensional kernel of the model is decomposed into a set of independent orthonormal bases (rather than a single, common basis), each of which is parameterized by an individual set of poles intended for representing the dominant dynamic of the kernel along a particular dimension; and (ii) a novel, more computationally efficient method to analytically and recursively calculate the search directions (gradients) for the bases poles is derived. A simulated example is presented to illustrate the performance of the proposed approach. A comparison between the proposed method, which uses asymmetric kernels with multiple orthonormal bases, and the original method, which uses symmetric kernels with a single basis, is presented. © 2011 IEEE.
dc.description
dc.description
dc.description1052
dc.description1058
dc.descriptionMediterranean Control Association
dc.descriptionBillings, S.A., Identification of nonlinear systems - A survey (1980) IEE Proc. Pt D, 127 (6), pp. 272-285
dc.descriptionBoyd Stephen, Chua Leon, O., Fading memory and the problem of approximating nonlinear operators with volterra series (1985) IEEE transactions on circuits and systems, CAS-32 (11), pp. 1150-1161
dc.descriptionBokor, J., Schipp, F., Approximate identification in Laguerre and Kautz bases (1998) Automatica, 34 (4), pp. 463-468. , PII S000510989700201X
dc.descriptionBroome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Favier, G., Optimal expansions of discrete-time Volterra models using Laguerre functions (2004) Automatica, 40, pp. 815-822
dc.descriptionCampello, R.J.G.B., Do Amaral, W.C., Favier, G., A note on the optimal expansion of Volterra models using Laguerre functions (2006) Automatica, 42 (4), pp. 689-693. , DOI 10.1016/j.automatica.2005.12.003, PII S0005109806000069
dc.descriptionDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions (2009) IEEE Transactions on Automatic Control, 54 (12), pp. 2757-2772
dc.descriptionDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions (2007) Automatica, 43 (6), pp. 1084-1091. , DOI 10.1016/j.automatica.2006.12.007, PII S0005109807000738
dc.descriptionDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., (2008) Exact Search Directions for Optimization of Linear and Nonlinear Models Based on Generalized Orthonormal Functions, , http://www.icmc.usp.br/, Technical report, Department of Computer Sciences, University of São Paulo (USP) campello
dc.descriptionDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension (2008) International Journal of Control, 81 (6), pp. 962-975
dc.descriptionDoyle III, F.J., Pearson, R.K., Ogunnaike, B.A., (2002) Identification and Control Using Volterra Models, , Springer-Verlag
dc.descriptionDumont, G.A., Fu, Y., Non-linear adaptive control via laguerre expansion of volterra kernels (1993) Int. J. Adaptive Control and Signal Processing, 7 (5), pp. 367-382
dc.descriptionEykhoff, P., (1974) System Identification: Parameter and State Estimation, , John Wiley & Sons, New York
dc.descriptionHeuberger, P.S.C., Van Den Hof, P.M.J., Bosgra, O.H., A generalized orthonormal basis for linear dynamical systems (1995) IEEE Transactions on Automatic Control, 40 (3), pp. 451-465
dc.descriptionHeuberger, P.S.C., Van Den Hof, P.M.J., Wahlberg, B., (2005) Modelling and Identification with Rational Orthogonal Basis Functions, , Springer
dc.descriptionKautz, W.H., Transient synthesis in time domains (1954) IRE Trans. on Circuit Theory, 1 (3), pp. 29-39
dc.descriptionLevenberg, K., A method for the solution of certain nonlinear problems in least squares (1944) Quartely of Applied Mathematics, 2 (2), pp. 164-168
dc.descriptionMarquardt, D.W., An algorithm for the least-squares estimation of nonlinear parameters (1963) SIAM Journal of Applied Mathematics, 11 (2), pp. 431-441
dc.descriptionNelles, O., (2001) Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, , Springer- Verlag, Berlin
dc.descriptionNinness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Transactions on Automatic Control, 42 (4), pp. 515-521. , PII S0018928697028080
dc.descriptionOliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G.A., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-571. , DOI 10.1016/S0005-1098(99)00179-X
dc.descriptionRugh, W.J., (1981) Nonlinear Systems Theory - The Volterra/Wiener Approach, , The Johns Hopkins University Press, Baltimore
dc.descriptionSchetzen, M., (1989) The Volterra and Wiener Theories of Nonlinear Systems, , Robert Krieger Publishing Company
dc.descriptionTakenaka, S., On the orthogonal functions and a new formula of interpolation (1925) Japanese Journal of Mathematics, 2, pp. 129-145
dc.descriptionDen Hof, P.M.J.V., Heuberger, P.S.C., Bokor, J., System identification with generalized orthonormal basis functions (1995) Automatica, 31 (12), pp. 1821-1834
dc.descriptionWahlberg, B., System identification using Kautz models (1994) IEEE Transactions on Automatic Control, 39 (6), pp. 1276-1282
dc.descriptionWahlberg, B., Makila, P.M., On approximation of stable linear dynamical systems using Laguerre and Kautz functions (1996) Automatica, 32 (5), pp. 693-708. , DOI 10.1016/0005-1098(95)00198-0
dc.descriptionWiener, N., (1942) Response of A Nonlinear Device to Noise, , Technical Report 129, Radiation Laboratory, M.I.T., Abril
dc.descriptionWiener, N., (1966) Nonlinear Problems in Random Theory, , The MIT Press
dc.descriptionZiaei, K., Wang, D.W.L., Application of orthonormal basis functions for identification of flexible-link manipulators (2006) Control Engineering Practice, 14 (2), pp. 99-106. , DOI 10.1016/j.conengprac.2004.11.020, PII S0967066105000365
dc.languageen
dc.publisher
dc.relation2011 19th Mediterranean Conference on Control and Automation, MED 2011
dc.rightsfechado
dc.sourceScopus
dc.titleOptimization Of Volterra Models With Asymmetrical Kernels Based On Generalized Orthonormal Functions
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución