Brasil | Artículos de revistas
dc.creatorGonzalez J.S.
dc.creatorHoppe C.E.
dc.creatorMuraca D.
dc.creatorSanchez F.H.
dc.creatorAlvarez V.A.
dc.date2011
dc.date2015-06-30T20:26:51Z
dc.date2015-11-26T14:49:19Z
dc.date2015-06-30T20:26:51Z
dc.date2015-11-26T14:49:19Z
dc.date.accessioned2018-03-28T22:00:19Z
dc.date.available2018-03-28T22:00:19Z
dc.identifier
dc.identifierColloid And Polymer Science. , v. 289, n. 17-18, p. 1839 - 1846, 2011.
dc.identifier0303402X
dc.identifier10.1007/s00396-011-2501-1
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84855185827&partnerID=40&md5=b83f53907ca371ce134745f71d463dd8
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107970
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107970
dc.identifier2-s2.0-84855185827
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253873
dc.descriptionPolyvinyl alcohol (PVA) ferrogels were easily obtained through a one-pot technique that involves co-precipitation of iron salts in the presence of a PVA solution, followed by freezing-thawing cycles of the resulting nanoparticles (NPs) dispersions. The protecting effect of PVA enabled the synthesis of small magnetic NPs that did not agglomerate in the initial solution allowing the synthesis of well-dispersed ferrogels by physical cross-linking. Physical properties of the physically cross-linked ferrogels, as swelling ability, melting temperature, and crystallinity, were barely affected by the presence of NPs, presenting similar or improved values when compared with chemically cross-linked systems. Ferrogels showed superparamagnetic properties at room temperature that combined with the absence of toxic residues arising from cross-linking agents make them ideal candidates for their use in biomedical applications (artificial muscles, drug delivery, and sensors among others). © 2011 Springer-Verlag.
dc.description289
dc.description17-18
dc.description1839
dc.description1846
dc.descriptionOsada, Y., Gong, J.P., Tanaka, Y.J., Polymer gels 1 (2004) J Macromol Sci Polymer Rev, 44, pp. 87-112. , 10.1081/MC-120027935 10.1081/MC-120027935 1:CAS:528:DC%2BD2cXhtlWls7w%3D
dc.descriptionSonmez, H.B., Wudl, F., Cross-linked poly(orthocarbonate)s as organic solvent sorbents (2005) Macromolecules, 38 (5), pp. 1623-1626. , DOI 10.1021/ma048731x
dc.descriptionJilie, K., Li, M., Smart polymers. Applications in biotechnology and biomedicine (2008) Smart Hydrogels, , I. Galaev B. Mattiasson (eds). CRC Press Boca Raton 13:978-0-8493-9161-3
dc.descriptionKato, T., Hirai, Y., Nakaso, S., Moriyama, M., Liquid-crystalline physical gels (2007) Chem Soc Rev, 36, pp. 1857-1867. , 10.1039/b612546h 1:CAS:528:DC%2BD2sXht1GhtbzF
dc.descriptionFeldgitscher, C., Peterlik, H., Puchberger, M., Kickelbick, G., Structural investigations on hybrid polymers suitable as a nanoparticle precipitation environment (2009) Chem Mater, 21, pp. 695-705. , 10.1021/cm802171s 10.1021/cm802171s 1:CAS:528:DC%2BD1MXpt1entg%3D%3D
dc.descriptionSchexnailder, P., Schmidt, G., Nanocomposite polymer hydrogels (2009) Colloid Polym Sci, 287, pp. 1-11. , 10.1007/s00396-008-1949-0 10.1007/s00396-008-1949-0 1:CAS:528: DC%2BD1cXhtlWrtLzO
dc.descriptionFilipcsei, G., Csetneki, I., Szilágyi, A., Zrínyi, M., Magnetic field-responsive smart polymer composites (2007) Adv Polym Sci, 206, pp. 137-189. , 10.1007/12-2006-104 1:CAS:528:DC%2BD2sXksVWns7w%3D
dc.descriptionSchewertmann, U., Cornell, R.M., (1991) Iron Oxides in the Laboratory: Preparation and Characterization, , VCH Weinheim
dc.descriptionSamba Sivudu, K., Rhee, K.Y., Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite (2009) Colloid Surface Physicochem Eng Aspect, 349, pp. 29-34. , 10.1016/j.colsurfa.2009.07.048 10.1016/j.colsurfa.2009.07.048
dc.descriptionLiu, Z., Liu, Y., Yang, H., Yang, Y., Shen, G., Yu, R., A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode (2005) Analytica Chimica Acta, 533 (1), pp. 3-9. , DOI 10.1016/j.aca.2004.10.077, PII S0003267004014308
dc.descriptionMao, L., Hu, Y., Piao, Y., Chen, X., Xian, W., Piao, D., Structure and character of artificial muscle model constructed from fibrous hydrogel (2005) Current Applied Physics, 5 (5), pp. 426-428. , DOI 10.1016/j.cap.2004.11.003, PII S1567173905000088
dc.descriptionParadossi, G., Cavalieri, F., Chiessi, E., Spagnoli, C., Cowman, M.K., Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications (2003) Journal of Materials Science: Materials in Medicine, 14 (8), pp. 687-691. , DOI 10.1023/A:1024907615244
dc.descriptionMatejka, L., Dukh, O., Meissner, B., Hlavatá, D., Brus, J., Strachota, A., Block copolymer organic-inorganic networks. Formation and structure ordering (2003) Macromolecules, 36, pp. 7977-7985. , 10.1021/ma034234p 10.1021/ma034234p 1:CAS:528:DC%2BD3sXntlyrsbc%3D
dc.descriptionHu, S.-H., Liu, T.-Y., Liu, D.-M., Chen, S.-Y., Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field (2007) Macromolecules, 40 (19), pp. 6786-6788. , DOI 10.1021/ma0707584
dc.descriptionSatarkar, N., Zach Hilt, J., Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release (2008) J Control Release, 130, pp. 246-251. , 10.1016/j.jconrel.2008.06 10.1016/j.jconrel.2008.06.008 1:CAS:528:DC%2BD1cXhtFSqsb%2FI
dc.descriptionLiu, T.-Y., Hu, S.-H., Liu, T.-Y., Liu, D.-M., Chen, S.-Y., Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug (2006) Langmuir, 22 (14), pp. 5974-5978. , DOI 10.1021/la060371e
dc.descriptionQiu, X.-P., Winnik, F., Preparation and characterization of PVA coated magnetic nanoparticles (2000) Chin J Polym Sci, 18 (6), pp. 535-539. , 1:CAS:528:DC%2BD3cXnvVGgtLw%3D
dc.descriptionLin, H., Watanabe, Y., Kimura, M., Hanabusa, K., Shirai, H., Preparation of magnetic poly(vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix (2003) Journal of Applied Polymer Science, 87 (8), pp. 1239-1247. , DOI 10.1002/app.11520
dc.descriptionVacile, C., Kulshshreshta, A.K., (2003) Handbook of Polymer Blends and Composites, 4. , Rapra Technology Ltd. Shrewsbury
dc.descriptionMatsuyama, H., Teramoto, M., Urano, H., Analysis of solute diffusion in poly(vinyl alcohol) hydrogel membrane (1997) Journal of Membrane Science, 126 (1), pp. 151-160. , DOI 10.1016/S0376-7388(96)00287-6, PII S0376738896002876
dc.descriptionHill, D.J.T., Whittaker, A.K., Water diffusion into radiation crosslinked PVA-PVP network hydrogels (2011) Radiat Phys Chem, 80, pp. 213-218. , 10.1016/j.radphyschem.2010.07.035 10.1016/j.radphyschem.2010.07.035 1:CAS:528:DC%2BC3cXhsVCku7vJ
dc.descriptionPeppas, N.A., Mongia, N.K., Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics (1997) European Journal of Pharmaceutics and Biopharmaceutics, 43 (1), pp. 51-58. , DOI 10.1016/S0939-6411(96)00010-0, PII S0939641196000100
dc.descriptionGriffith Cima, L., Lopina, S.T., Network structures of radiation-cross-linked star polymer gels (1995) Macromolecules, 28, pp. 6787-6794. , 10.1021/ma00124a013 10.1021/ma00124a013
dc.descriptionMahmoudi, M., Simchi, A., Imani, M., Stroeve, P., Sohrabi, A., Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol) (2010) Thin Solid Films, 518, pp. 4281-4289. , 10.1016/j.tsf.2009.12.112 1:CAS:528:DC%2BC3cXlsVClt7o%3D
dc.descriptionHassan, C.M., Peppas, N.A., Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods (2000) Advances in Polymer Science, 153, pp. 37-65
dc.descriptionWillcox, P.J., Howie Jr., D.W., Schmidt-Rohr, K., Hoagland, D.A., Gido, S.P., Pudjijanto, S., Kleiner, L.W., Venkatraman, S., Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling (1999) Journal of Polymer Science, Part B: Polymer Physics, 37 (24), pp. 3438-3454. , DOI 10.1002/(SICI)1099-0488(19991215)37:24<3438::AID-POLB6>3.0. CO;2-9
dc.descriptionYang, X., Liu, Q., Chen, X., Zhu, Z., Investigation on the formation mechanisms of hydrogels made by combination of γ-ray irradiation and freeze-thawing (2008) Journal of Applied Polymer Science, 108 (2), pp. 1365-1372. , DOI 10.1002/app.27832
dc.descriptionLpez, D., Cendoya, I., Torres, F., Tejada, J., Mijangos, C., Preparation and characterization of poly(vinyl alcohol)-based magnetic nanocomposites. 1. Thermal and mechanical properties (2001) Journal of Applied Polymer Science, 82 (13), pp. 3215-3222. , DOI 10.1002/app.2180
dc.descriptionSzabo, D., Czako-Nagy, I., Zrinyi, M., Vertes, A., Magnetic and Mossbauer studies of magnetite-loaded polyvinyl alcohol hydrogels (2000) Journal of Colloid and Interface Science, 221 (2), pp. 166-172. , DOI 10.1006/jcis.1999.6572
dc.descriptionBertoglio, P., Jacobo, S.E., Daraio, M.E., Preparation and characterization of PVA films with magnetic nanoparticles: The effect of particle loading on drug release behavior (2010) J Appl Polym Sci, 115, pp. 1859-1865. , 10.1002/app.31315 10.1002/app.31315 1:CAS:528:DC%2BD1MXhsVersbvF
dc.descriptionResendiz-Hernandez, P.J., Rodriguez-Fernandez, O.S., Garcia-Cerda, L.A., Synthesis of poly(vinyl alcohol) magnetite ferrogel obtained by freezing thawing technique (2008) J Magn Magn Mater, 320, pp. 373-e376. , 10.1016/j.jmmm.2008.02.073 10.1016/j.jmmm.2008.02.073 1:CAS:528:DC%2BD1cXlsFCrsL0%3D
dc.descriptionTheppaleak, T., Tumcharern, G., Wichai, U., Rutnakornpituk, M., Synthesis of water dispersible magnetite nanoparticles in the presence of hydrophilic polymers (2009) Polym Bull, 63, pp. 79-90. , 10.1007/s00289-009-0075-6 10.1007/s00289-009-0075-6 1:CAS:528: DC%2BD1MXkslOgsr8%3D
dc.descriptionGonzalez, J.S., Alvarez, V.A., (2011) Advances in Materials Science Research, 10, pp. 265-285. , M.C. Wythers (eds). Nova Commack 978-1-61324-511-8
dc.descriptionMallapragada, S.K., Peppas, N.A., Dissolution Mechanism of Semicrystalline Poly(vinyl alcohol) in Water (1996) Journal of Polymer Science, Part B: Polymer Physics, 34 (7), pp. 1339-1346
dc.descriptionPeppas, N.A., Merrill, E.W., Differential scanning calorimetry of crystallized PVA hydrogels (1976) J Appl Polym Sci, 20, pp. 1457-1465. , 10.1002/app.1976.070200604 1:CAS:528:DyaE28XksVOhsrg%3D
dc.descriptionAlbornoz, C., Sileo, E.E., Jacobo, S.E., Magnetic polymers of maghemite (γ-Fe2O3) and polyvinyl alcohol (2004) Phys B Condens Matter, 354 (31), pp. 149-153. , 10.1016/j.physb.2004.09.038 10.1016/j.physb.2004.09.038 1:CAS:528:DC%2BD2cXhtVyru7rE
dc.descriptionRicciardi, R., Auriemma, F., Gaillet, C., De Rosa, C., Laupretre, F., Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques (2004) Macromolecules, 37 (25), pp. 9510-9516. , DOI 10.1021/ma048418v
dc.descriptionGupta, S., Pramanik, A.K., Kailath, A., Mishra, T., Guha, A., Nayar, S., Sinha, A., Composition dependent structural modulations in transparent poly(vinyl alcohol) hydrogels (2009) Colloid Surf B Biointerfaces, 74, pp. 186-190. , 10.1016/j.colsurfb.2009.07.015 10.1016/j.colsurfb.2009.07.015 1:CAS:528:DC%2BD1MXhtF2htLfO
dc.descriptionCullity, B.D., (1978) Elements of X-ray Diffraction, , 2 Addison-Wesley Reading
dc.descriptionKokabi, M., Sirousazar, M., Hassan, Z.M., PVA-clay nanocomposite hydrogels for wound dressing (2007) European Polymer Journal, 43 (3), pp. 773-781. , DOI 10.1016/j.eurpolymj.2006.11.030, PII S0014305706004265
dc.descriptionDaniel-Da-Silva, A.L., Lóio, R., Lopes-Da-Silva, J.A., Trindade, T., Goodfellow, B.J., Gil, A.M., Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels (2008) J Colloid Interface Sci, 324, pp. 205-211. , 10.1016/j.jcis.2008.04.051 10.1016/j.jcis.2008.04.051 1:CAS:528:DC%2BD1cXnsFans70%3D
dc.descriptionLaurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (2008) Chem Rev, 108, pp. 2064-2110. , 10.1021/cr068445e 10.1021/cr068445e 1:CAS:528:DC%2BD1cXmvFCjtb0%3D
dc.descriptionWu, J.-H., Ko, S.P., Liu, H.-L., Kim, S., Ju, J.-S., Kim, Y.K., Sub 5nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties (2007) Materials Letters, 61 (14-15), pp. 3124-3129. , DOI 10.1016/j.matlet.2006.11.032, PII S0167577X06013176
dc.descriptionVargas, J.M., Lima Jr., E., Zysler, R.D., Duque, J.G.S., De Biasi, E., Knobel, M., Effective anisotropy field variation of magnetite nanoparticles with size reduction (2008) Eur Phys J B, 64, pp. 211-218. , 10.1140/epjb/e2008-00294-6 10.1140/epjb/e2008-00294-6 1:CAS:528:DC%2BD1cXhtFChtb%2FO
dc.descriptionMajewski, P., Thierry, B., Functionalized magnetite nanoparticles-synthesis, properties, and bio-applications (2007) Crit Rev Solid Mater Sci, 32, pp. 203-215. , 10.1080/10408430701776680 10.1080/10408430701776680 1:CAS:528: DC%2BD2sXhtlylu7zF
dc.languageen
dc.publisher
dc.relationColloid and Polymer Science
dc.rightsfechado
dc.sourceScopus
dc.titleSynthesis And Characterization Of Pva Ferrogels Obtained Through A One-pot Freezing-thawing Procedure
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución