dc.creatorFranco M.A.R.
dc.creatorSerrao V.A.
dc.creatorPitarello T.R.
dc.creatorCerqueira S. Jr. A.
dc.date2011
dc.date2015-06-30T20:26:45Z
dc.date2015-11-26T14:49:18Z
dc.date2015-06-30T20:26:45Z
dc.date2015-11-26T14:49:18Z
dc.date.accessioned2018-03-28T22:00:18Z
dc.date.available2018-03-28T22:00:18Z
dc.identifier9780819482464
dc.identifierProceedings Of Spie - The International Society For Optical Engineering. , v. 7753, n. , p. - , 2011.
dc.identifier0277786X
dc.identifier10.1117/12.885961
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79957994137&partnerID=40&md5=07dcd0e57dd40fdde68820dfe817f866
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107960
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107960
dc.identifier2-s2.0-79957994137
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253865
dc.descriptionThe opto-mechanical response of Hybrid Photonic Crystal Fiber (HPCF) with Ge-doped inclusions is numerically modeled for high hydrostatic pressure sensing purpose. A typical photonic crystal fiber (PCF) consists of a silica solidcore and a cladding with a hexagonal lattice of air-holes. The HPCF is similar to the regular PCF, but a horizontal line of air-holes is substituted by solid high index rods of Ge-doped silica. The optical guidance in HPCFs is supported combining two physical effects: the modified total internal reflection and the photonic bandgap. In such fibers, the Gedoped inclusions induce residual birefringence. In our analysis, we evaluate the susceptibility of the phase modal birefringence and group birefringence to hydrostatic pressure. The analyses were performed at a photonic bandgap with central wavelength near to 1350 nm. The polarimetric pressure sensitivity is about 10 rad/MPa x m at λ = 1175 nm. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
dc.description7753
dc.description
dc.description
dc.description
dc.descriptionOz Optics,Simbol Test Systems, Inc.,FISO Technologies, Inc.,CMC Microsystems Corporation,Innovative Economy: National Strategic Reference Framework
dc.descriptionCerqueira, A.S., Hybrid photonic crystal fiber (2006) Opt. Express, 14 (2), pp. 926-931
dc.descriptionCerqueira, A.S., Recent progress and novel applications of photonic crystal fibers (2010) Rep. Prog. Phys., 73, p. 023301
dc.descriptionCerqueira, A.S., Birefringence properties of hybrid photonic crystal fibers (2009) Proceedings of Microwave and Optoelectronics Conference (IMOC 2009), pp. 804-806. , Belem, Brazil, 03-06, November
dc.descriptionFranco, M.A.R., Thermal tunability of photonic bandgaps in photonic crystal fibers selectively filled with nematic liquid crystal Proceedings of 2nd Workshop on Specialty Optical Fibers and Their Applications (WSOF-2), Oaxaca, Mexico, 13-15, October, (2010)
dc.descriptionFleming, J.W., Dispersion in GeO2 -SiO2 glasses (1984) Appl. Opt., 23 (24), pp. 4486-4493
dc.descriptionMartynkien, T., Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure (2010) Opt. Express, 18 (14), pp. 15113-15121
dc.descriptionKühn, B., Schadrack, R., Thermal expansion of synthetic fused silica as a function of OH content and fictive temperature (2009) J. Non-Cryst. Solids, 355, pp. 323-326
dc.descriptionGupta, D., Kumar, A., Thyagarajan, K., Polarization mode dispersion in single mode optical fibers due to core-ellipticity (2006) Opt. Commun., 263, pp. 36-41
dc.descriptionKoshiba, M., (1992) Optical Waveguide Theory by the Finite Element Method, pp. 133-160. , KTK Scientific Publishers and Kluwer Academic Publishers, Tokyo
dc.descriptionUrbanczyk, W., Martynkien, T., Bock, W.J., Dispersion effects in elliptical-core highly birefringent fibers (2001) Appl. Opt., 40 (12), pp. 1911-1920
dc.descriptionOlszewski, J., Birefringence analysis in photonic crystal fibers with germanium-doped core (2009) J. Opt. A: Pure Appl. Opt., 11, pp. 1-10
dc.descriptionMartynkien, T., Urbanczyk, W., Modeling of spectral characteristics of Corning PMF-38 highly birefringent fiber (2002) Optik, 113 (1), pp. 25-30
dc.descriptionHlubina, P., Broad spectral range measurements and modelling of birefringence dispersion in two-mode elliptical-core fibres (2010) J. Opt., 12, pp. 1-8
dc.descriptionMartynkien, T., Birefringence in microstructure fiber with elliptical GeO2 highly doped inclusion in the core (2008) Opt. Lett., 33 (23), pp. 2764-2766
dc.descriptionVerbandt, Y., Polarimetric Optical Fiber Sensors: Aspects of Sensitivity and Practical Implementation (1997) Opt. Rev., 4 (1 A), pp. 75-79
dc.descriptionLagakos, N., Bucaro, J.A., Hughes, R., Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering (1980) Appl. Opt., 19 (21), pp. 3668-3670
dc.descriptionChiang, K.S., Sceats, Wong, D., Ultraviolet photolytic-induced changes in optical fibers: The thermal expansion coefficient (1993) Opt. Lett., 18 (12), pp. 965-967
dc.languageen
dc.publisher
dc.relationProceedings of SPIE - The International Society for Optical Engineering
dc.rightsaberto
dc.sourceScopus
dc.titleHybrid Photonic Crystal Fiber Sensing Of High Hydrostatic Pressure
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución