Artículos de revistas
Estimation Of The Rbe Of Mammography-quality Beams Using A Combination Of A Monte Carlo Code With A B-dna Geometrical Model
Registro en:
Physics In Medicine And Biology. , v. 56, n. 23, p. 7393 - 7403, 2011.
319155
10.1088/0031-9155/56/23/004
2-s2.0-81355164260
Autor
Bernal M.A.
Dealmeida C.E.
David M.
Pires E.
Institución
Resumen
The PENELOPE code is used to determine direct strand break yields corresponding to photons from a 60Co source and 28 and 30 kV x-ray beams impacting on a B-DNA geometrical model, which accounts for five organizational levels of the human genetic material. Direct single, double and total strand break probabilities are determined in a liquid water homogeneous medium with 1.06 g cm-3 density. The spectra produced by the x-ray beams at various depths in the phantom have been used to study the dependence of the damage yield on the depth. The relative biological effectiveness (RBE) is also estimated using the 60Co radiation qualities as the reference. According to this work, the damage probabilities and thus the RBE are, within the uncertainties, similar for both x-ray energies and are independent of the depth into the phantom. Furthermore, the total strand break yield is invariant with respect to the energy of the incident photons. The RBE for low-energy x-ray beams determined here (1.3 0.1) is lower than that reported by Kellerer, taking into account that he used a 200 kV radiation as the reference quality. However, our RBE values are consistent with those determined by Kühne et al (2005 Radiat. Res. 164 669-76), which used the same biological endpoint and reference quality as our study. Also, our RBE values are similar to those determined by Verhaegen and Reniers (2004 Radiat. Res. 162 592-9). © 2011 Institute of Physics and Engineering in Medicine. 56 23 7393 7403 Bernal, M.A., De Almeida, C.E., Sampaio, C., Incerti, S., Champion, C., Nieminen, P., The invariance of the total direct DNA strand break yield (2011) Med. Phys., 38, pp. 4147-4153 Bernal, M.A., Liendo, J.A., An investigation on the capabilities of the PENELOPE MC code in nanodosimetry (2009) Med. Phys., 36, pp. 620-625 Brenner, D.J., Amols, H.I., Enhanced risk from low-energy screen-film mammography X rays (1989) British Journal of Radiology, 62 (742), pp. 910-914 David, M.G., Pires, E.J., Bernal, M.A., Peixoto, J.P.G., Dealmeida, C.E., Experimental and Monte Carlo-simulated spectra of standard mammography-quality beams (2011) Br. J. Radiol. Dingfelder, M., Hantke, D., Inokuti, M., Paretzke, H.G., Electron inelastic-scattering cross sections in liquid water (1998) Radiation Physics and Chemistry, 53 (1), pp. 1-18. , DOI 10.1016/S0969-806X(97)00317-4, PII S0969806X97003174 Frankenberg, D., Brede, H.J., Schrewe, U.J., Steinmetz, C., Frankenberg-Schwager, M., Kasten, G., Pralle, E., Induction of DNA double-strand breaks in mammalian cells and yeast (2000) Adv. Space Res., 25, pp. 2085-2094 Frankenberg, D., Kelnhofer, K., Bar, K., Frankenberg-Schwager, M., Enhanced neoplastic transformation by mammography X rays relative to 200 kVp X rays: Indication for a strong dependence on photon energy of the RBE M for various end points (2002) Radiation Research, 157 (1), pp. 99-105 Friedland, W., Bernhardt, P., Jacob, P., Paretzke, H.G., Dingfelder, M., Simulation of DNA damage after proton and low LET irradiation (2003) Radiat. Res., 99, pp. 99-102 Friedland, W., Jacob, P., Paretzke, H.G., Merzagora, M., Ottolenghi, A., Simulation of DNA fragment distributions after irradiation with photons (1999) Radiation and Environmental Biophysics, 38 (1), pp. 39-47. , DOI 10.1007/s004110050136 Friedland, W., Jacob, P., Paretzke, H.G., Stork, T., Monte carlo simulation of the production of short DNA fragments by low- linear energy transfer radiation using higher-order DNA models (1998) Radiation Research, 150 (2), pp. 170-182. , DOI 10.2307/3579852 Friedland, W., Jacob, P., Paretzke, H.G., Ottolenghi, A., Ballarini, F., Liotta, M., Simulation of light ion induced DNA damage patterns (2006) Radiation Protection Dosimetry, 122 (1-4), pp. 116-120. , DOI 10.1093/rpd/ncl451 Goggelmann, W., Jacobsen, C., Panzer, W., Walsh, L., Roos, H., Schmid, E., Re-evaluation of the RBE of 29 kV x-rays (mammography x-rays) relative to 220 kV x-rays using neoplastic transformation of human CGL1-hybrid cells (2003) Radiation and Environmental Biophysics, 42 (3), pp. 175-182. , DOI 10.1007/s00411-003-0210-y Hsiao, Y., Stewart, R.D., Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes (2008) Phys. Med. Biol., 53, pp. 233-244 Hunter, N., Muirhead, C.R., Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations (2009) J. Radiol. Prot., 29, pp. 5-21 The quality factor in radiation protection (1986) Technical Report 40, , Bethesda, MD: ICRU Kellerer, A.M., Electron spectra and the RBE of x-rays (2002) Radiat. Res., 158, pp. 13-22 Kühne, M., Urban, G., Frankenberg, D., Löbrich, M., DNA double-strand break misrejoining after exposure of primary human fibroblasts to CK characteristic x-rays, 29 kVp x-rays and 60Co rays (2005) Radiat. Res., 164, pp. 669-676 Lehnert, A., Lessmann, E., Pawelke, J., Dorr, W., RBE of 25 kV X-rays for the survival and induction of micronuclei in the human mammary epithelial cell line MCF-12A (2006) Radiation and Environmental Biophysics, 45 (4), pp. 253-260. , DOI 10.1007/s00411-006-0062-3 Lehnert, A., Dorr, W., Lessmanna, E., Pawelke, J., RBE of 10 kV X rays determined for the human mammary epithelial cell line MCF-12A (2008) Radiation Research, 169 (3), pp. 330-336. , http://www.rrjournal.org/archive/0033-7587/169/3/pdf/i0033-7587-169-3- 330.pdf, DOI 10.1667/RR0874.1 Mestres, M., Caballin, M.R., Barrios, L., Ribas, M., Barquinero, J.F., RBE of X rays of different energies: A cytogenetic evaluation by FISH (2008) Radiation Research, 170 (1), pp. 93-100. , http://www.rrjournal.org/archive/0033-7587/170/1/pdf/i0033-7587-170-1-93. pdf, DOI 10.1667/RR1280.1 Nikjoo, H., Goodhead, D.T., Track structure analysis illustrating the prominent role of low-energy electrons in radiobiological effects of low-LET radiation (1991) Phys. Med. Biol., 36, p. 229 Nikjoo, H., Goodhead, D.T., Charlton, D.E., Paretzke, H.G., Energy deposition in small cylindrical targets by monoenergetic electrons (1991) Int. J. Radiat. Biol., 60, pp. 739-756 Nikjoo, H., O'Neill, P., Wilson, W.E., Goodhead, D.T., Computational approach for determining the spectrum of DNA damage induced by ionizing radiation (2001) Radiation Research, 156 (5), pp. 577-583 Panajotovic, R., Martin, F., Cloutier, P., Hunting, D., Sanche, L., Effective cross sections for production of single-strand breaks in plasmid DNA by 0.1 to 4.7 eV electrons (2006) Radiat. Res., 165, pp. 452-459 Pomplun, E., A new DNA target model for track structure calculations and its first application to I-125 auger electrons (1991) Int. J. Radiat. Biol., 59, pp. 625-642 Prise, K.M., Ahnstrom, G., Belli, M., Carlsson, J., Frankenberg, D., Kiefer, J., Lobrich, M., Stenerlow, B., A review of dsb induction data for varying quality radiations (1998) International Journal of Radiation Biology, 74 (2), pp. 173-184. , DOI 10.1080/095530098141564 Salvat, F., Fernandez-Varea, J.M., Sempau, J., A code system for Monte Carlo simulation of electron and photon transport (2008) Technical Report, , Issy-les-Moulineaux: OECD-NEA Schmid, E., Regulla, D., Kramer, H.-M., Harder, D., The effect of 29 kV X rays on the dose response of chromosome aberrations in human lymphocytes (2002) Radiation Research, 158 (6), pp. 771-777 Schmid, E., Krumrey, M., Ulm, G., Roos, H., Regulla, D., The Maximum Low-Dose RBE of 17.4 and 40 keV Monochromatic X Rays for the Induction of Dicentric Chromosomes in Human Peripheral Lymphocytes (2003) Radiation Research, 160 (5), pp. 499-504. , DOI 10.1667/RR3070 Semenenko, V.A., Stewart, R.D., A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation (2004) Radiation Research, 161 (4), pp. 451-457. , DOI 10.1667/RR3140 Semenenko, V.A., Stewart, R.D., Fast Monte Carlo simulation of DNA damage formed by electrons and light ions (2006) Phys. Med. Biol., 51, pp. 1693-1706 Stewart, R.D., Wilson, W.E., McDonald, J.C., Strom, D.J., Microdosimetric properties of ionizing electrons in water: A test of the PENELOPE code system (2002) Phys. Med. Biol., 47, pp. 77-88 Verhaegen, F., Reniers, B., Microdosimetric analysis of various mammography spectra: Lineal energy distributions and ionization cluster analysis (2004) Radiation Research, 162 (5), pp. 592-599. , DOI 10.1667/RR3246