dc.creatorRodrigues M.M.
dc.creatorBargieri D.Y.
dc.creatorSoares I.S.
dc.creatorCosta F.T.M.
dc.creatorBraga C.J.
dc.creatorFerreira L.C.S.
dc.date2011
dc.date2015-06-30T20:23:58Z
dc.date2015-11-26T14:48:50Z
dc.date2015-06-30T20:23:58Z
dc.date2015-11-26T14:48:50Z
dc.date.accessioned2018-03-28T21:59:41Z
dc.date.available2018-03-28T21:59:41Z
dc.identifier
dc.identifierJournal Of Parasitology Research. , v. 2011, n. , p. - , 2011.
dc.identifier20900023
dc.identifier10.1155/2011/965369
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79955366710&partnerID=40&md5=f22a6810419ce669ddfce65acb009462
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107793
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107793
dc.identifier2-s2.0-79955366710
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253721
dc.descriptionIn the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines. Copyright © 2011 Daniel Y. Bargieri et al.
dc.description2011
dc.description
dc.description
dc.description
dc.descriptionNussenzweig, R.S., Vanderberg, J., Most, H., Orton, C., Protective immunity produced by the injection of X-irradiated sporozoites of plasmodium berghei (1967) Nature, 216 (5111), pp. 160-162
dc.descriptionMueller, A.K., Labaied, M., Kappe, S., Matuschewski, K., Genetically modified Plasmodium parasites as a protective experimental malaria vaccine (2005) Nature, 13 (7022), pp. 164-167
dc.descriptionVan Dijk, M.R., Douradinha, B., Franke-Fayard, B., Heussler, V., Van Dooren, M.W., Van Schaijk, B., Van Gemert, G.-J., Janse, C.J., Genetically attenuated P36p-deficient malarial sporozouites induce protective immunity and apoptosis of infected liver cells (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (34), pp. 12194-12199. , DOI 10.1073/pnas.0500925102
dc.descriptionVanbuskirk, K.M., O'Neill, M.T., De La Vega, P., Maier, A.G., Krzych, U., Williams, J., Dowler, M.G., Kappe, S.H.I., Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design (2009) Proceedings of the National Academy of Sciences of the United States of America, 106 (31), pp. 13004-13009
dc.descriptionTing, L.M., Gissot, M., Coppi, A., Sinnis, P., Kim, K., Attenuated Plasmodium yoelii lacking purine nucleoside phosphorylase confer protective immunity (2008) Nature Medicine, 14 (9), pp. 954-958
dc.descriptionAly, A.S.I., Downie, M.J., Mamoun, C.B., Kappe, S.H.I., Subpatent infection with nucleoside transporter 1-deficient Plasmodium blood stage parasites confers sterile protection against lethal malaria in mice (2010) Cellular Microbiology, 12 (7), pp. 930-938
dc.descriptionSpaccapelo, R., Janse, C.J., Caterbi, S., Franke-Fayard, B., Bonilla, J.A., Syphard, L.M., Di Cristina, M., Crisanti, A., Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria (2010) American Journal of Pathology, 176 (1), pp. 205-217
dc.descriptionArun Kumar, K., Sano, G.-I., Boscardin, S., Nussenzweig, R.S., Nussenzweig, M.C., Zavala, F., Nussenzweig, V., The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites (2006) Nature, 444 (7121), pp. 937-940. , DOI 10.1038/nature05361, PII NATURE05361
dc.descriptionMauduit, M., Grner, A.C., Tewari, R., Depinay, N., Kayibanda, M., Chavatte, J.M., Franetich, J.F., Rnia, L., A role for immune responses against non-CS components in the cross-species protection induced by immunization with irradiated malaria sporozoites (2009) PLoS ONE, 4 (11). , ARTICLE E7717
dc.descriptionRomero, P., Maryanski, J.L., Corradin, G., Nussenzweig, R.S., Nussenzweig, V., Zavala, F., Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria (1989) Nature, 341 (6240), pp. 323-326. , DOI 10.1038/341323a0
dc.descriptionNardin, E.H., Herrington, D.A., Davis, J., Levine, M., Stuber, D., Takacs, B., Caspers, P., Nussenzweig, R.S., Conserved repetitive epitope recognized by CD4 + clones from a malaria-immunized volunteer (1989) Science, 246 (4937), pp. 1603-1606
dc.descriptionRenia, L., Marussig, M.S., Grillot, D., Pied, S., Corradin, G., Mlltgen, F., Del Gludice, G., Mazier, D., In vitro activity of CD4 + and CD8 + T lymphocytes from mice immunized with a synthetic malaria peptide (1991) Proceedings of the National Academy of Sciences of the United States of America, 88 (18), pp. 7963-7967
dc.descriptionRodrigues, M.M., Cordey, A.S., Arreaza, G., Corradin, G., Romero, P., Maryanski, J.L., Nussenzweig, R.S., Zavala, F., CD8+ cytolytic T cell clones derived against the Plasmodium yoelii circumsporozoite protein protect against malaria (1991) International Immunology, 3 (6), pp. 579-585
dc.descriptionMalik, A., Egan, J.E., Houghten, R.A., Sadoff, J.C., Hoffman, S.L., Human cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein (1991) Proceedings of the National Academy of Sciences of the United States of America, 88 (8), pp. 3300-3304
dc.descriptionTam, J.P., Clavijo, P., Lu, Y.-A., Nussenzweig, V., Nussenzweig, R., Zavala, F., Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria (1990) Journal of Experimental Medicine, 171 (1), pp. 299-306. , DOI 10.1084/jem.171.1.299
dc.descriptionNardin, E.H., Oliveira, G.A., Calvo-Calle, J.M., Nussenzweig, R.S., The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases (1995) Advances in Immunology, 60, pp. 105-149
dc.descriptionCalvo-Calle, J.M., Oliveira, G.A., Watta, C.O., Soverow, J., Parra-Lopez, C., Nardin, E.H., A linear peptide containing minimal T- and B-cell epitopes of Plasmodium falciparum circumsporozoite protein elicits protection against transgenic sporozoite challenge (2006) Infection and Immunity, 74 (12), pp. 6929-6939. , DOI 10.1128/IAI.01151-06
dc.descriptionBruna-Romero, O., Gonzalez-Aseguinolaza, G., Hafalla, J.C.R., Tsuji, M., Nussenzweig, R.S., Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (20), pp. 11491-11496. , DOI 10.1073/pnas.191380898
dc.descriptionReyes-Sandoval, A., Berthoud, T., Alder, N., Siani, L., Gilbert, S.C., Nicosia, A., Colloca, S., Hill, A.V.S., Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses (2010) Infection and Immunity, 78 (1), pp. 145-153
dc.descriptionOphorst, O.J.A.E., Radosevic, K., Havenga, M.J.E., Pau, M.G., Holterman, L., Berkhout, B., Goudsmit, J., Tsuji, M., Immunogenicity and protection of a recombinant human adenovirus serotype 35-based malaria vaccine against Plasmodium yoelii in mice (2006) Infection and Immunity, 74 (1), pp. 313-320. , DOI 10.1128/IAI.74.1.313-320.2006
dc.descriptionShiratsuchi, T., Rai, U., Krause, A., Worgall, S., Tsuji, M., Replacing adenoviral vector HVR1 with a malaria B cell epitope improves immunogenicity and circumvents preexisting immunity to adenovirus in mice (2010) Journal of Clinical Investigation, 120 (10), pp. 3688-3701
dc.descriptionLi, S., Rodrigues, M., Rodriguez, D., Rodriguez, J.R., Esteban, M., Palese, P., Nussenzweig, R.S., Zavala, F., Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8 + T-cell-mediated protective immunity against malaria (1993) Proceedings of the National Academy of Sciences of the United States of America, 90 (11), pp. 5214-5218
dc.descriptionRodrigues, M., Li, S., Murata, K., Rodriguez, D., Rodriguez, J.R., Bacik, I., Bennink, J.R., Zavala, F., Influenza and vaccinia viruses expressing malaria CD8 + T and B cell epitopes: Comparison of their immunogenicity and capacity to induce protective immunity (1994) Journal of Immunology, 153 (10), pp. 4636-4648
dc.descriptionSedegah, M., Jones, T.R., Kaur, M., Hedstrom, R., Hobart, P., Tine, J.A., Hoffman, S.L., Boosting with recombinant vaccinia increases immunogenicity and protective efficacy of malaria DNA vaccine (1998) Proceedings of the National Academy of Sciences of the United States of America, 95 (13), pp. 7648-7653. , DOI 10.1073/pnas.95.13.7648
dc.descriptionSchneider, J., Gilbert, S.C., Blanchard, T.J., Hanke, T., Robson, K.J., Hannan, C.M., Becker, M., Hill, A.V.S., Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara (1998) Nature Medicine, 4 (4), pp. 397-402. , DOI 10.1038/nm0498-397
dc.descriptionWebster, D.P., Dunachie, S., Vuola, J.M., Berthoud, T., Keating, S., Laidlaw, S.M., McConkey, S.J., Hill, A.V.S., Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (13), pp. 4836-4841. , DOI 10.1073/pnas.0406381102
dc.descriptionDunachie, S.J., Walther, M., Epstein, J.E., Keating, S., Berthoud, T., Andrews, L., Andersen, R.F., Hill, A.V.S., A DNA prime-modified vaccinia virus Ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge (2006) Infection and Immunity, 74 (10), pp. 5933-5942. , DOI 10.1128/IAI.00590-06
dc.descriptionBejon, P., Ogada, E., Mwangi, T., Milligan, P., Lang, T., Fegan, G., Gilbert, S.C., Hill, A.V.S., Extended follow-up following a phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya (2007) PLoS ONE, 2 (8). , ARTICLE E707
dc.descriptionSchmidt, N.W., Podyminogin, R.L., Butler, N.S., Badovinac, V.P., Tucker, B.J., Bahjat, K.S., Lauer, P., Harty, J.T., Memory CD8+ T cell responses exceeding a large but definable threshold provide long-term immunity to malaria (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (37), pp. 14017-14022
dc.descriptionRodrigues, M., Nussenzweig, R.S., Romero, P., Zavala, F., The in vivo cytotoxic activity of CD8+ T cell clones correlates with their levels of expression of adhesion molecules (1992) Journal of Experimental Medicine, 175 (4), pp. 895-905
dc.descriptionCohen, J., Nussenzweig, V., Nussenzweig, R., Vekemans, J., Leach, A., From the circumsporozoite protein to the RTS,S/AS candidate vaccine (2010) Human Vaccines, 6 (1), pp. 90-96
dc.descriptionKester, K.E., Cummings, J.F., Ofori-Anyinam, O., Ockenhouse, C.F., Krzych, U., Moris, P., Schwenk, R., Heppner, D.G., Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: Safety, efficacy, and immunologic associates of protection (2009) Journal of Infectious Diseases, 200 (3), pp. 337-346
dc.descriptionBejon, P., Lusingu, J., Olotu, A., Leach, A., Lievens, M., Vekemans, J., Mshamu, S., Von Seidlein, L., Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age (2008) New England Journal of Medicine, 359 (24), pp. 2521-2532
dc.descriptionAbdulla, S., Oberholzer, R., Juma, O., Kubhoja, S., MacHera, F., Membi, C., Omari, S., Tanner, M., Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants (2008) New England Journal of Medicine, 359 (24), pp. 2533-2544
dc.descriptionGamain, B., Smith, J.D., Viebig, N.K., Gysin, J., Scherf, A., Pregnancy-associated malaria: Parasite binding, natural immunity and vaccine development (2007) International Journal for Parasitology, 37 (3-4), pp. 273-283. , DOI 10.1016/j.ijpara.2006.11.011, PII S0020751906004036
dc.descriptionWipasa, J., Riley, E.M., The immunological challenges of malaria vaccine development (2007) Expert Opinion on Biological Therapy, 7 (12), pp. 1841-1852. , DOI 10.1517/14712598.7.12.1841
dc.descriptionGenton, B., Reed, Z.H., Asexual blood-stage malaria vaccine development: Facing the challenges (2007) Current Opinion in Infectious Diseases, 20 (5), pp. 467-475. , DOI 10.1097/QCO.0b013e3282dd7a29, PII 0000143220071000000005
dc.descriptionHviid, L., The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development (2010) Human Vaccines, 6 (1), pp. 84-89
dc.descriptionDahlbck, M., Nielsen, M.A., Salanti, A., Can any lessons be learned from the ambiguous glycan binding of PfEMP1 domains? (2010) Trends in Parasitology, 26 (5), pp. 230-235
dc.descriptionKhunrae, P., Dahlbck, M., Nielsen, M.A., Andersen, G., Ditlev, S.B., Resende, M., Pinto, V.V., Salanti, A., Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies (2010) Journal of Molecular Biology, 397 (3), pp. 826-834
dc.descriptionReed, Z.H., Friede, M., Kieny, M.P., Malaria vaccine development: Progress and challenges (2006) Current Molecular Medicine, 6 (2), pp. 231-245
dc.descriptionYazdani, S.S., Mukherjee, P., Chauhan, V.S., Chitnis, C.E., Immune responses to asexual blood-stages of malaria parasites (2006) Current Molecular Medicine, 6 (2), pp. 187-203
dc.descriptionLanghorne, J., Ndungu, F.M., Sponaas, A.-M., Marsh, K., Immunity to malaria: More questions than answers (2008) Nature Immunology, 9 (7), pp. 725-732. , DOI 10.1038/ni.f.205, PII NI.F.205
dc.descriptionKadekoppala, M., Holder, A.A., Merozoite surface proteins of the malaria parasite: The MSP1 complex and the MSP7 family (2010) International Journal for Parasitology, 40 (10), pp. 1155-1161
dc.descriptionRemarque, E.J., Faber, B.W., Kocken, C.H.M., Thomas, A.W., Apical membrane antigen 1: A malaria vaccine candidate in review (2008) Trends in Parasitology, 24 (2), pp. 74-84
dc.descriptionChitnis, C.E., Sharma, A., Targeting the Plasmodium vivax Duffy-binding protein (2008) Trends in Parasitology, 24 (1), pp. 29-34
dc.descriptionBrown, A., Higgins, M.K., Carbohydrate binding molecules in malaria pathology (2010) Current Opinion in Structural Biology, 20 (5), pp. 560-566
dc.descriptionBabon, J.J., Morgan, W.D., Kelly, G., Eccleston, J.F., Feeney, J., Holder, A.A., Structural studies on Plasmodium vivax merozoite surface protein-1 (2007) Molecular and Biochemical Parasitology, 153 (1), pp. 31-40. , DOI 10.1016/j.molbiopara.2007.01.015, PII S0166685107000412
dc.descriptionO'Donnell, R.A., Saul, A., Cowman, A.F., Crabb, B.S., Functional conservation of the malaria vaccine antigen MSP-1 19 across distantly related Plasmodium species (2000) Nature Medicine, 6 (1), pp. 91-95. , DOI 10.1038/71595
dc.descriptionSanders, P.R., Kats, L.M., Drew, D.R., O'Donnell, R.A., O'Neill, M., Maier, A.G., Coppel, R.L., Crabb, B.S., A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion (2006) Infection and Immunity, 74 (7), pp. 4330-4338. , DOI 10.1128/IAI.00054-06
dc.descriptionCombe, A., Giovannini, D., Carvalho, T.G., Spath, S., Boisson, B., Loussert, C., Thiberge, S., Mnard, R., Clonal conditional mutagenesis in malaria parasites (2009) Cell Host and Microbe, 5 (4), pp. 386-396
dc.descriptionDaly, T.M., Long, C.A., A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice (1993) Infection and Immunity, 61 (6), pp. 2462-2467
dc.descriptionDaly, T.M., Long, C.A., Influence of adjuvants on protection induced by a recombinant fusion protein against malarial infection (1996) Infection and Immunity, 64 (7), pp. 2602-2608
dc.descriptionSingh, B., Cabrera-Mora, M., Jiang, J., Galinski, M., Moreno, A., Genetic linkage of autologous T cell epitopes in a chimeric recombinant construct improves anti-parasite and anti-disease protective effect of a malaria vaccine candidate (2010) Vaccine, 28 (14), pp. 2580-2592
dc.descriptionPerera, K.L.R.L., Handunnetti, S.M., Holm, I., Longacre, S., Mendis, K., Baculovirus Merozoite Surface Protein 1 C-Terminal Recombinant Antigens Are Highly Protective in a Natural Primate Model for Human Plasmodium vivax Malaria (1998) Infection and Immunity, 66 (4), pp. 1500-1506
dc.descriptionLyon, J.A., Angov, E., Fay, M.P., Sullivan, J.S., Girourd, A.S., Robinson, S.J., Bergmann-Leitner, E.S., Barnwell, J.W., Protection induced by plasmodium falciparum MSP1 is strain-specific, antigen and adjuvant dependent, and correlates with antibody responses (2008) PLoS ONE, 3 (7). , ARTICLE E2830
dc.descriptionOgutu, B.R., Apollo, O.J., McKinney, D., Okoth, W., Siangla, J., Dubovsky, F., Tucker, K., Withers, M.R., Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya (2009) PLoS ONE, 4 (3). , ARTICLE E4708
dc.descriptionReed, Z.H., Kieny, M.P., Engers, H., Friede, M., Chang, S., Longacre, S., Malhotra, P., Long, C., Comparison of immunogenicity of five MSP1-based malaria vaccine candidate antigens in rabbits (2009) Vaccine, 27 (10), pp. 1651-1660
dc.descriptionRamos, H.C., Rumbo, M., Sirard, J.-C., Bacterial flagellins: Mediators of pathogenicity and host immune responses in mucosa (2004) Trends in Microbiology, 12 (11), pp. 509-517. , DOI 10.1016/j.tim.2004.09.002, PII S0966842X04002069
dc.descriptionHayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Aderem, A., The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 (2001) Nature, 410 (6832), pp. 1099-1103. , DOI 10.1038/35074106
dc.descriptionSmith, K.D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M.A., Rassoulian Barrett, S.L., Cookson, B.T., Aderem, A., Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility (2003) Nature Immunology, 4 (12), pp. 1247-1253. , DOI 10.1038/ni1011
dc.descriptionMeans, T.K., Hayashi, F., Smith, K.D., Aderem, A., Luster, A.D., The toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells (2003) Journal of Immunology, 170 (10), pp. 5165-5175
dc.descriptionArimilli, S., Johnson, J.B., Clark, K.M., Graff, A.H., Alexander-Miller, M.A., Mizel, S.B., Parks, G.D., Engineered expression of the TLR5 ligand flagellin enhances paramyxovirus activation of human dendritic cell function (2008) Journal of Virology, 82 (22), pp. 10975-10985
dc.descriptionMerlo, A., Calcaterra, C., Menard, S., Balsari, A., Cross-talk between Toll-like receptors 5 and 9 on activation of human immune responses (2007) Journal of Leukocyte Biology, 82 (3), pp. 509-518. , http://www.jleukbio.org/cgi/reprint/82/3/509, DOI 10.1189/jlb.0207100
dc.descriptionAgrawal, S., Agrawal, A., Doughty, B., Gerwitz, A., Blenis, J., Van Dyke, T., Pulendran, B., Cutting Edge: Different Toll-Like Receptor Agonists Instruct Dendritic Cells to Induce Distinct Th Responses via Differential Modulation of Extracellular Signal-Regulated Kinase-Mitogen-Activated Protein Kinase and c-Fos (2003) Journal of Immunology, 171 (10), pp. 4984-4989
dc.descriptionDidierlaurent, A., Ferrero, I., Otten, L.A., Dubois, B., Reinhard, M., Carlsen, H., Blomhoff, R., Sirard, J.-C., Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response (2004) Journal of Immunology, 172 (11), pp. 6922-6930
dc.descriptionBates, J.T., Uematsu, S., Akira, S., Mizel, S.B., Direct stimulation of tlr5+/+ CD11c+ cells is necessary for the adjuvant activity of flagellin (2009) Journal of Immunology, 182 (12), pp. 7539-7547
dc.descriptionMiao, E.A., Alpuche-Aranda, C.M., Dors, M., Clark, A.E., Bader, M.W., Miller, S.I., Aderem, A., Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf (2006) Nature Immunology, 7 (6), pp. 569-575. , DOI 10.1038/ni1344, PII N1344
dc.descriptionLightfield, K.L., Persson, J., Brubaker, S.W., Witte, C.E., Von Moltke, J., Dunipace, E.A., Henry, T., Vance, R.E., Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin (2008) Nature Immunology, 9 (10), pp. 1171-1178
dc.descriptionZamboni, D.S., Kobayashi, K.S., Kohlsdorf, T., Ogura, Y., Long, E.M., Vance, R.E., Kuida, K., Roy, C.R., The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection (2006) Nature Immunology, 7 (3), pp. 318-325
dc.descriptionVinzing, M., Eitel, J., Lippmann, J., Hocke, A.C., Zahlten, J., Slevogt, H., N'Guessan, P.D., Opitz, B., NAIP and Ipaf control Legionella pneumophila replication in human cells (2008) Journal of Immunology, 180 (10), pp. 6808-6815
dc.descriptionBuzzo, C.L., Campopiano, J.C., Massis, L.M., Lage, S.L., Cassado, A.A., Leme-Souza, R., Cunha, L.D., Bortoluci, K.R., A novel pathway for inducible nitric-oxide synthase activation through inflammasomes (2010) Journal of Biological Chemistry, 285 (42), pp. 32087-32095
dc.descriptionBortoluci, K.R., Medzhitov, R., Control of infection by pyroptosis and autophagy: Role of TLR and NLR (2010) Cellular and Molecular Life Sciences, 67 (10), pp. 1643-1651
dc.descriptionNewton, S.M.C., Jacob, C.O., Stocker, B.A.D., Immune response to cholera toxin epitope inserted in Salmonella flagellin (1989) Science, 244 (4900), pp. 70-72
dc.descriptionMcEwen, J., Levi, R., Horwitz, R.J., Arnon, R., Synthetic recombinant vaccine expressing influenza haemagluttinin epitope in Salmonella flagellin leads to partial protection in mice (1992) Vaccine, 10 (6), pp. 405-411
dc.descriptionLuna, M.G., Martins, M.M., Newton, S.M.C., Costa, S.O.P., Almeida, D.F., Ferreira, L.C.S., Cloning and expression of colonization factor antigen I (CFA/I) epitopes of enterotogenic Escherichia coli (ETEC) in Salmonella flagellin (1997) Research in Microbiology, 148 (3), pp. 217-228. , DOI 10.1016/S0923-2508(97)85242-4
dc.descriptionMizel, S.B., Bates, J.T., Flagellin as an adjuvant: Cellular mechanisms and potential (2010) Journal of Immunology, 185 (10), pp. 5677-5682
dc.descriptionHuleatt, J.W., Nakaar, V., Desai, P., Huang, Y., Hewitt, D., Jacobs, A., Tang, J., Powell, T.J., Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin (2008) Vaccine, 26 (2), pp. 201-214. , DOI 10.1016/j.vaccine.2007.10.062, PII S0264410X0701256X
dc.descriptionSong, L., Nakaar, V., Kavita, U., Price, A., Huleatt, J., Tang, J., Jacobs, A., Tussey, L., Efficacious recombinant influenza vaccines produced by high yield bacterial expression: A solution to global pandemic and seasonal needs (2008) PLoS ONE, 3
dc.descriptionTreanor, J.J., Taylor, D.N., Tussey, L., Hay, C., Nolan, C., Fitzgerald, T., Liu, G., Shaw, A., Safety and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in healthy young adults (2010) Vaccine, 28 (52), pp. 8268-8274
dc.descriptionBarbedo, M.B., Ricci, R., Jimenez, M.C.S., Cunha, M.G., Yazdani, S.S., Chitnis, C.E., Rodrigues, M.M., Soares, I.S., Comparative recognition by human IgG antibodies of recombinant proteins representing three asexual erythrocytic stage vaccine candidates of Plasmodium vivax (2007) Memorias do Instituto Oswaldo Cruz, 102 (3), pp. 335-339. , http://memorias.ioc.fiocruz.br/5787.pdf
dc.descriptionSoares, I.S., Barnwell, J.W., Ferreira, M.U., Da Cunha, M.G., Laurino, J.P., Castilho, B.A., Rodrigues, M.M., A Plasmodium vivax vaccine candidate displays limited allele polymorphism, which does not restrict recognition by antibodies (1999) Molecular Medicine, 5 (7), pp. 459-470
dc.descriptionRodrigues, M.H.C., Cunha, M.G., Machado, R.L.D., Ferreira Jr., O.C., Rodrigues, M.M., Soares, I.S., Serological detection of Plasmodium vivax malaria using recombinant proteins corresponding to the 19-kDa C-terminal region of the merozoite surface protein-1 (2003) Malaria Journal, 2, pp. 1-7. , http://www.malariajournal.com/content/2/1/39, DOI 10.1186/1475-2875-2-1, 1
dc.descriptionDutta, S., Kaushal, D.C., Ware, L.A., Puri, S.K., Kaushal, N.A., Narula, A., Upadhyaya, D.S., Lanar, D.E., Merozoite surface protein 1 of Plasmodium vivax induces a protective response against Plasmodium cynomolgi challenge in rhesus monkeys (2005) Infection and Immunity, 73 (9), pp. 5936-5944. , DOI 10.1128/IAI.73.9.5936-5944.2005
dc.descriptionBargieri, D.Y., Rosa, D.S., Braga, C.J.M., Carvalho, B.O., Costa, F.T.M., Espndola, N.M., Vaz, A.J., Rodrigues, M.M., New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin (2008) Vaccine, 26 (48), pp. 6132-6142
dc.descriptionBargieri, D.Y., Leite, J.A., Lopes, S.C.P., Sbrogio-Almeida, M.E., Braga, C.J.M., Ferreira, L.C.S., Soares, I.S., Rodrigues, M.M., Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella Typhimurium (2010) Vaccine, 28 (16), pp. 2818-2826
dc.descriptionBraga, C.J.M., Massis, L.M., Sbrogio-Almeida, M.E., Alencar, B.C.G., Bargieri, D.Y., Boscardin, S.B., Rodrigues, M.M., Ferreira, L.C.S., CD8+ T cell adjuvant effects of Salmonella FliCd flagellin in live vaccine vectors or as purified protein (2010) Vaccine, 28 (5), pp. 1373-1382
dc.descriptionPino, O., Martin, M., Michalek, S.M., Cellular mechanisms of the adjuvant activity of the flagellin component FljB of Salmonella enterica serovar typhimurium to potentiate mucosal and systemic responses (2005) Infection and Immunity, 73 (10), pp. 6763-6770. , DOI 10.1128/IAI.73.10.6763-6770.2005
dc.descriptionDatta, S.K., Redecke, V., Prilliman, K.R., Takabayashi, K., Corr, M., Tallant, T., DiDonato, J., Raz, E., A subset of toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells (2003) Journal of Immunology, 170 (8), pp. 4102-4110
dc.descriptionVicente-Suarez, I., Brayer, J., Villagra, A., Cheng, F., Sotomayor, E.M., TLR5 ligation by flagellin converts tolerogenic dendritic cells into activating antigen-presenting cells that preferentially induce T-helper 1 responses (2009) Immunology Letters, 125 (2), pp. 114-118
dc.descriptionSanders, C.J., Franchi, L., Yarovinsky, F., Uematsu, S., Akira, S., Nez, G., Gewirtz, A.T., Induction of adaptive immunity by flagellin does not require robust activation of innate immunity (2009) European Journal of Immunology, 39 (2), pp. 359-371
dc.descriptionVijay-Kumar, M., Carvalho, F.A., Aitken, J.D., Fifadara, N.H., Gewirtz, A.T., TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin (2010) European Journal of Immunology, 40 (12), pp. 3528-3534
dc.languageen
dc.publisher
dc.relationJournal of Parasitology Research
dc.rightsaberto
dc.sourceScopus
dc.titleMalaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins The Bridge Between Mouse And Humans?
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución