Artículos de revistas
Subpathotypes Of Avian Pathogenic Escherichia Coli (apec) Exist As Defined By Their Syndromes And Virulence Traits
Registro en:
Open Microbiology Journal. , v. 5, n. SUPPL.1, p. 55 - 64, 2011.
18742858
10.2174/1874285801105010055
2-s2.0-79961094449
Autor
Maturana V.G.
de Pace F.
Carlos C.
Pires M.M.
De Campos T.A.
Nakazato G.
Stheling E.G.
Logue C.M.
Nolan L.K.
Da Silveira W.D.
Institución
Resumen
Avian pathogenic Escherichia coli (APEC) strains cause different types of systemic extraintestinal infections in poultry, collectively termed colibacillosis, which can cause significant economic losses in the poultry industry. To date, there have been no descriptions of genes or characteristics that allow for the classification of avian strains pathotypes responsible for causing specific diseases in their hosts. In this study we aimed to characterize avian E. coli strains representing 4 groups, including one of commensal strains (AFEC - Avian Fecal Escherichia coli) and 3 groups of APEC strains, where each group is responsible for causing a different disease syndrome in their respective hosts (septicemia, omphalitis and swollen head syndrome). We chose to examine several biological characteristics of these strains including: adhesion to eukaryotic cells, pathogenicity levels according to the lethal dose (50%) assay, phylogenetic group and virulence gene profiles. The comparison of strains based on these genotypic and phenotypic traits, using multivariate statisticals tools and complex networks, allowed us to infer information about the population structure of the studied groups. Our results indicate that APEC strains do not constitute a unique homogeneous group, but rather a structured set of subgroups, where each one is associated with a specific infectious syndrome which can possibly be used to define pathotypes or subpathotypes within APEC strains. These results offer new possibilities with which to study the genes responsible for various pathogenetic processes within APEC strains, and for vaccine development. It may be important to consider these subgroups when developing a vaccine in an effort for obtain cross protection, which has not yet been successfully accomplished when working with APEC strains. 5 SUPPL.1 55 64 Kaper, J.B., Nataro, J.P., Mobley, H.L.T., Pathogenic Escherichia coli (2004) Nat Rev Microbiol, pp. 123-140 Dho-Moulin, M., Fairbrother, J.M., Avian pathogenic Escherichia coli (APEC) (1999) Vet Res, 30, pp. 299-316 Barnes, H.J., Nolan, L.K., Vaillancourt, J.F., Colibacillosis (2008) Diseases of Poultry, pp. 691-732. , In: Saif YM, Fadly AM, Glisson JR, McDougald LR, Nolan LK, Swayne DE Eds., 12th ed. Ames, Blackwell Publishing Dziva, F., Stevens, M.P., Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts (2008) Avian Pathol, 37, pp. 355-366 Johnson, T.J., Wannemuehler, Y., Doetkott, C., Johnson, S.J., Rosen-Berger, S.C., Nolan, L.K., Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool (2008) J Clin Microbiol, 46, pp. 3987-3996 Rodriguez-Siek, K.E., Giddings, C.W., Doetkott, C., Johnson, T.J., Nolan, L.K., Characterizing the APEC pathotype (2005) Vet Res, 36, pp. 241-256 Johnson, T.J., Kariyawasam, S., Wannemuehler, Y., The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E (2007) Coli Genomes. J Bacteriol, 189, pp. 3228-3236 Sambrook, J., Fritsch, E.F., Maniats, T., (1989) Molecular Cloning - a Labora-tory Manual, , 2nd ed. New York: Cold Spring Harbor Laboratory Press Clermont, O., Bonacorsi, S., Bingen, E., Rapid and simple determination of Escherichia coli phylogenetic group (2000) Appl Environ Microbiol, 66, pp. 4555-4558 Dho-Moulin, M., Lafont, J.P., Escherichia coli colonization of the trachea in poultry: Comparison of virulent and avirulent strains in gnotoxenic chickens (1982) Avian Dis, 26, pp. 787-797 Scaletsky, I.C.A., Silva, M.L.M., Trabulsi, L.R., Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells (1984) Infect Immun, 45, pp. 534-536 Silveira, W.D., Fantinatti, F., Castro, A.P., Tranposon mutagenesis and membrane protein studies in an avian colisepticemic Escherichia coli strain (1994) Brazil J Genetics, 17, pp. 9-14 Reed, L.J., Muench, H., A simple method for estimating fifty per centend points (1938) Am J Hyg, 27, pp. 493-497 Hill, T., Lewicki, P., Statistics Methods and Applications (2007) Stat Soft Inc Girvan, M., Newman, M.E.J., Community structure in social and biological networks (2002) Proc Natl Acad Sci USA, 99, pp. 7821-7826 Guimerà, R., Sales-Pardo, M., Modularity from fluctuations in random graphs and complex networks (2004) Phys Rev, 70, p. 025101. , Amaral LAN Guimerà, R., Amaral, L.A.N., Functional cartography of complex metabolic networks (2005) Nature, 433, pp. 895-900 Delicato, E.R., Brito, B.G., Gaziri, L.C., Vidotto, M.C., Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis (2003) Vet Microbiol, 94, pp. 97-103 Mokady, D., Gophna, U., Ron, E.Z., Extensive gene diversity in septi-cemic Escherichia coli Strains (2005) J Clin Microbiol, 43, pp. 66-73 Stocki, S.L., Babiuk, L.A., Rawlyk, N.A., Potter, A.A., Allan, B.J., Identification of genomic differences between Escherichia coli strains pathogenic for poultry and E. Coli K-12 MG1655 Using Suppression Subtractive Hybridization Analysis (2002) Microb Pathog, 33, pp. 289-298 Okeke, I.N., Scaletsky, I.C.A., Soars, E.H., Macfarlane, L.R., Torres, A.G., Molecular epidemiology of the iron utilization genes of enteroag-gregative Escherichia coli (2004) J Clin Microbiol, 42, pp. 36-44 Schubert, S., Rakin, A., Karch, H., Carniel, E., Heesemann, J., Prevalence of the high-pathogenicity island of Yersinia species among Escherichia coli strains that are pathogenic to humans (1998) Infect Immun, 66, pp. 480-485 Ye, C., Xu, J., Prevalence of iron transport gene on pathogenicity-associated island of uropathogenic Escherichia coli in E. Coli O157:H7 Containing Shiga Toxin Gene (2001) J Clin Microbiol, 39, pp. 2300-2305 Runyen-Janecky, L.J., Reeves, S.A., Gonzales, E.G., Payne, S.M., Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells (2003) Infect Immun, 71, pp. 1919-1928 Marc, D., Dho-Moulin, M., Analysis of the fim cluster of an avian O2 strain of Escherichia coli: Serogroup-specific sites within fimA and nucleotide sequence of fimI (1996) J Med Microbiol, 44, pp. 444-452 Bouguenec, L.C., Archambaud, M., Labigne, A., Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uro-pathogenic Escherichia coli strains by polymerase chain reaction (1992) J Clin Microbiol, 30, pp. 1189-1193 Maurer, J.J., Brown, T.P., Steffens, W.L., Thayer, S.G., The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among Avian Escherichia coli (1998) Avian Dis, 42, pp. 106-118 Szalo, I.M., Goffaux, F., Pirson, V., Piérard, D., Ball, H., Mainil, J., Presence in bovine enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Escherichia coli of genes encoding for putative adhesins of human EHEC strains (2002) Res Microbiol, 153, pp. 653-658 Toma, C., Espinosa, E.M., Song, T., Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli (2004) J Clin Microbiol, 42, pp. 4937-4946 Schmidt, H., Zhang, W.L., Hemmrich, U., Identification and characterization of a novel genomic island integrated at selC in locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli (2000) Infect Immun, 69, pp. 6863-6873