dc.creatorFileti A.M.F.
dc.creatorda Silva F.V.
dc.creatorPereira J.A.F.R.
dc.date2011
dc.date2015-06-30T20:21:28Z
dc.date2015-11-26T14:48:33Z
dc.date2015-06-30T20:21:28Z
dc.date2015-11-26T14:48:33Z
dc.date.accessioned2018-03-28T21:59:21Z
dc.date.available2018-03-28T21:59:21Z
dc.identifier
dc.identifierActa Scientiarum - Technology. , v. 33, n. 2, p. 185 - 189, 2011.
dc.identifier18062563
dc.identifier10.4025/actascitechnol.v33i2.9936
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79955755840&partnerID=40&md5=204eb3579768a6d17bf7fdcf324c0065
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107670
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107670
dc.identifier2-s2.0-79955755840
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253643
dc.descriptionDifferent types of flow control valves are commercially available but most are only adequate for high flow rates. These are provided with pneumatic devices to reduce explosion risks in industrial plants. Flow-reduced and low pressure valves are small sized, usually driven by analogical signals and very expensive. Current assay developed an on-line computer-aided flow control electronic system made up of common electronic components within a comparative voltage scheme. A subtracted amplifier was employed in the electronic circuit which compares two voltages for rotation direction control and stoppage of speed engine reducer linked to the common valve stem. This low cost system is very efficient and has the advantage of being electronically assembled without any difficulty. Different sized valves were successfully coupled to the electronic circuit-driven reduction engine which provided flexibility to the developed apparatus. Calibration and time delay determination assays are provided, with lowest flow rates ranging between 0.3 and 3.6 mL s -1.
dc.description33
dc.description2
dc.description185
dc.description189
dc.descriptionAntunes, A.J.B., Pereira, J.A.F.R., Fileti, A.M.F., Fuzzy control of a PMMA batch reactor: Development and experimental testing (2005) Computers and Chemical Engineering, 30 (2), pp. 268-276
dc.descriptionDelamarche, E., Juncker, D., Schimid, H., Microfluidics for processing surfaces and miniaturizing biological assays (2005) Advanced Materials, 17 (24), pp. 2911-2933
dc.descriptionEl-Ali, J., Sorger, P.K., Jensen, K.F., Cells on chips (2006) Nature, 442, pp. 403-411
dc.descriptionErickson, D., Li, D., Integrated microfluidic devices (2004) Analytica Chimica Acta, 507 (1), pp. 11-26
dc.descriptionHosono, H., Satoh, W., Toya, M., Morimoto, K., Fukuda, J., Suzuki, H., Microanalysis system with automatic valve operation, pH regulation, and detection functions (2008) Sensors and Actuators B, 132 (2), pp. 614-622
dc.descriptionSilva, J.A.F., Lago, C.L., Electronic module for solenoid valve control (2002) Química Nova, 25 (5), pp. 842-843
dc.descriptionWeibel, D.B., Whitesides, G.M., Applications of microfluidics in chemical biology (2006) Current Opinion In Chemical Biology, 10 (6), pp. 584-591
dc.languagept
dc.publisher
dc.relationActa Scientiarum - Technology
dc.rightsaberto
dc.sourceScopus
dc.titleDevelopment Of Comparative Electronic Circuit For Reduced Flow Valve Control [desenvolvimento De Circuito Eletrônico Comparador Para Controle De Válvulas De Vazões Reduzidas]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución