dc.creatorAlmeida T.A.
dc.creatorAlmeida J.
dc.creatorYamakami A.
dc.date2011
dc.date2015-06-30T20:22:16Z
dc.date2015-11-26T14:48:30Z
dc.date2015-06-30T20:22:16Z
dc.date2015-11-26T14:48:30Z
dc.date.accessioned2018-03-28T21:59:18Z
dc.date.available2018-03-28T21:59:18Z
dc.identifier
dc.identifierJournal Of Internet Services And Applications. , v. 1, n. 3, p. 183 - 200, 2011.
dc.identifier18674828
dc.identifier10.1007/s13174-010-0014-7
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79952048598&partnerID=40&md5=76ae5955329f69963766249d53f94c49
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107703
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107703
dc.identifier2-s2.0-79952048598
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253631
dc.descriptionE-mail spam has become an increasingly important problem with a big economic impact in society. Fortunately, there are different approaches allowing to automatically detect and remove most of those messages, and the best-known techniques are based on Bayesian decision theory. However, such probabilistic approaches often suffer from a well-known difficulty: the high dimensionality of the feature space. Many term-selection methods have been proposed for avoiding the curse of dimensionality. Nevertheless, it is still unclear how the performance of Naive Bayes spam filters depends on the scheme applied for reducing the dimensionality of the feature space. In this paper, we study the performance of many term-selection techniques with several different models of Naive Bayes spam filters. Our experiments were diligently designed to ensure statistically sound results. Moreover, we perform an analysis concerning the measurements usually employed to evaluate the quality of spam filters. Finally, we also investigate the benefits of using the Matthews correlation coefficient as a measure of performance. © The Brazilian Computer Society 2010.
dc.description1
dc.description3
dc.description183
dc.description200
dc.descriptionAlmeida, T., Yamakami, A., Content-based spam filtering (2010) Proceedings of the 23rd IEEE international joint conference on neural networks, pp. 1-7. , Spain, Barcelona
dc.descriptionAlmeida, T., Yamakami, A., Almeida, J., Evaluation of approaches for dimensionality reduction applied with Naive Bayes anti-spam filters (2009) Proceedings of the 8th IEEE international conference on machine learning and applications, pp. 517-522. , Miami, FL, USA
dc.descriptionAlmeida, T., Yamakami, A., Almeida, J., Filtering spams using the minimum description length principle (2010) Proceedings of the 25th ACM symposium on applied computing, pp. 1856-1860. , Sierre, Switzerland
dc.descriptionAlmeida, T., Yamakami, A., Almeida, J., Probabilistic antispam filtering with dimensionality reduction (2010) Proceedings of the 25th ACM symposium on applied computing, pp. 1802-1806. , Sierre, Switzerland
dc.descriptionAndroutsopoulos, I., Koutsias, J., Chandrinos, K., Paliouras, G., Spyropoulos, C., An evaluation of Naive Bayesian anti-spam filtering (2000) Proceedings of the 11st European conference on machine learning, pp. 9-17. , Barcelona, Spain
dc.descriptionAndroutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, C., Stamatopoulos, P., Learning to filter spam e-mail: a comparison of a Naive Bayesian and a memory-based approach (2000) Proceedings of the 4th European conference on principles and practice of knowledge discovery in databases, pp. 1-13. , Lyon, France
dc.descriptionAndroutsopoulos, I., Paliouras, G., Michelakis, E., (2004) Learning to filter unsolicited commercial e-mail, , Technical Report 2004/2, National Centre for Scientific, Research "Demokritos", Athens, Greece
dc.descriptionBaldi, P., Brunak, S., Chauvin, Y., Andersen, C., Nielsen, H., Assessing the accuracy of prediction algorithms for classification: an overview (2000) Bioinformatics, 16 (5), pp. 412-424
dc.descriptionBratko, A., Cormack, G., Filipic, B., Lynam, T., Zupan, B., Spam filtering using statistical data compression models (2006) J Mach Learn Res, 7, pp. 2673-2698
dc.descriptionCarpinter, J., Hunt, R., Tightening the Net: a review of current and next generation spam filtering tools (2006) Comput Secur, 25 (8), pp. 566-578
dc.descriptionCarreras, X., Marquez, L., Boosting trees for anti-spam email filtering (2001) Proceedings of the 4th international conference on recent advances in natural language processing, pp. 58-64. , Tzigov Chark, Bulgaria
dc.descriptionCohen, W., Fast effective rule induction (1995) Proceedings of 12nd international conference on machine learning, pp. 115-123. , Tahoe City, CA, USA
dc.descriptionCohen, W., Learning rules that classify e-mail (1996) Proceedings of the AAAI spring symposium on machine learning in information access, pp. 18-25. , Stanford, CA, USA
dc.descriptionCormack, G., Email spam filtering: a systematic review (2008) Found Trends Inf Retr, 1 (4), pp. 335-455
dc.descriptionCormack, G., Lynam, T., Online supervised spam filter evaluation (2007) ACM Trans Inf Syst, 25 (3), pp. 1-11
dc.descriptionCunningham, P., Nowlan, N., Delany, S., Haahr, M., A casebased approach to spam filtering that can track concept drift (2003) Proceedings of the 5th international conference on case based reasoning, pp. 115-123. , Trondheim, Norway
dc.descriptionDemsar, J., Statistical comparisons of classifiers over multiple data sets (2006) J Mach Learn Res, 7, pp. 1-30
dc.descriptionDrucker, H., Wu, D., Vapnik, V., Support vector machines for spam categorization (1999) IEEE Trans Neural Netw, 10 (5), pp. 1048-1054
dc.descriptionForman, G., An extensive empirical study of feature selection metrics for text classification (2003) J Mach Learn Res, 3, pp. 1289-1305
dc.descriptionForman, G., Kirshenbaum, E., Extremely fast text feature extraction for classification and indexing (2008) Proceedings of 17th ACM conference on information and knowledge management, pp. 1221-1230. , Napa Valley, CA, USA
dc.descriptionForman, G., Scholz, M., Rajaram, S., Feature shaping for linear SVM classifiers (2000) Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 299-308. , Paris, France
dc.descriptionFriedman, N., Geiger, D., Goldszmidt, M., Bayesian network classifiers (1997) Mach Learn, 29 (3), pp. 131-163
dc.descriptionFuhr, N., Buckley, C., A probabilistic learning approach for document indexing (1991) ACM Trans Inf Syst, 9 (3), pp. 223-248
dc.descriptionGalavotti, L., Sebastiani, F., Simi, M., Experiments on the use of feature selection and negative evidence in automated text categorization (2000) Proceedings of 4th European conference on research and advanced technology for digital libraries, pp. 59-68. , Lisbon, Portugal
dc.descriptionGuzella, T., Caminhas, W., A review of machine learning approaches to spam filtering (2000) Exp Syst Appl, 36 (7), pp. 10206-10222
dc.descriptionHidalgo, J., Evaluating cost-sensitive unsolicited bulk email categorization (2002) Proceedings of the 17th ACM symposium on applied computing, pp. 615-620. , Madrid, Spain
dc.descriptionJoachims, T., A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization (1997) Proceedings of 14th international conference on machine learning, pp. 143-151. , Nashville, TN, USA
dc.descriptionJohn, G., Langley, P., Estimating continuous distributions in Bayesian classifiers (1995) Proceedings of the 11st international conference on uncertainty in artificial intelligence, pp. 338-345. , Montreal, Canada
dc.descriptionJohn, G., Kohavi, R., Pfleger, K., Irrelevant features and the subset selection problem (1994) Proceedings of 11st international conference on machine learning, pp. 121-129. , New Brunswick, NJ, USA
dc.descriptionKira, K., Rendell, L., A practical approach to feature selection (1992) Proceedings of the 9th international workshop on machine learning, pp. 249-256. , Aberdeen, Scotland, UK
dc.descriptionKolcz, A., Alspector, J., SVM-based filtering of e-mail spam with content-specific misclassification costs (2001) Proceedings of the 1st international conference on data mining, pp. 1-14. , San Jose, CA, USA
dc.descriptionKoprinska, I., Poon, J., Clark, J., Chan, J., Learning to classify e-mail (2007) Inf Sci, 177 (10), pp. 2167-2187
dc.descriptionLemire, D., Scale and translation invariant collaborative filtering systems (2005) Inf Retr, 8 (1), pp. 129-150
dc.descriptionLosada, D., Azzopardi, L., Assessing multivariate Bernoulli models for information retrieval (2008) ACM Trans Inf Syst, 26 (3), pp. 1-46
dc.descriptionMarsono, M., El-Kharashi, N., Gebali, F., Targeting spam control on middleboxes: spam detection based on layer-3 e-mail content classification (2009) Comput Netw, 53 (6), pp. 835-848
dc.descriptionMatthews, B., Comparison of the predicted and observed secondary structure of T4 phage lysozyme (1975) Biochim Biophys Acta, 405 (2), pp. 442-451
dc.descriptionMcCallum, A., Nigam, K., A comparison of event models for Naive Bayes text classification (1998) Proceedings of the 15th AAAI workshop on learning for text categorization, pp. 41-48. , Menlo Park, CA, USA
dc.descriptionMetsis, V., Androutsopoulos, I., Paliouras, G., Spam filtering with Naive Bayes-which Naive Bayes (2006) Proceedings of the 3rd international conference on email and anti-spam, pp. 1-5. , Mountain View, CA, USA
dc.descriptionMitchell, T., (1997) Machine learning, , McCraw-Hill, New York
dc.descriptionSahami, M., Dumais, S., Hecherman, D., Horvitz, E., A Bayesian approach to filtering junk e-mail (1998) Proceedings of the 15th national conference on artificial intelligence, pp. 55-62. , Madison, WI, USA
dc.descriptionSchapire, R., Singer, Y., Singhal, A., Boosting and Rocchio applied to text filtering (1998) Proceedings of the 21st annual international conference on information retrieval, pp. 215-223. , Melbourne, Australia
dc.descriptionSchneider, K., A comparison of event models for Naive Bayes anti-spam e-mail filtering (2003) Proceedings of the 10th conference of the European chapter of the association for computational linguistics, pp. 307-314. , Budapest, Hungary
dc.descriptionSchneider, K., On word frequency information and negative evidence in Naive Bayes text classification (2004) Proceedings of the 4th international conference on advances in natural language processing, pp. 474-485. , Alicante, Spain
dc.descriptionSebastiani, F., Machine learning in automated text categorization (2002) ACM Comput Surv, 34 (1), pp. 1-47
dc.descriptionSeewald, A., An evaluation of Naive Bayes variants in content-based learning for spam filtering (2007) Int Data Anal, 11 (5), pp. 497-524
dc.descriptionSong, Y., Kolcz, A., Gilez, C., Better Naive Bayes classification for high-precision spam detection (2009) Softw Pract Exp, 39 (11), pp. 1003-1024
dc.descriptionVan Rijsbergen, C., (1979) Information retrieval, , 2nd edn. Butterworths, London
dc.descriptionYang, Y., Pedersen, J., A comparative study on feature selection in text categorization (1997) Proceedings of the 14th international conference on machine learning, pp. 412-420. , Nashville, TN, USA
dc.descriptionZadeh, L., Fuzzy sets (1965) Inf Control, 8 (3), pp. 338-353
dc.languageen
dc.publisher
dc.relationJournal of Internet Services and Applications
dc.rightsaberto
dc.sourceScopus
dc.titleSpam Filtering: How The Dimensionality Reduction Affects The Accuracy Of Naive Bayes Classifiers
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución