dc.creatorOliveira G.H.C.
dc.creatorDa Rosa A.
dc.creatorCampello R.J.G.B.
dc.creatorMachado J.B.
dc.creatorAmaral W.C.
dc.date2011
dc.date2015-06-30T20:21:08Z
dc.date2015-11-26T14:48:26Z
dc.date2015-06-30T20:21:08Z
dc.date2015-11-26T14:48:26Z
dc.date.accessioned2018-03-28T21:59:12Z
dc.date.available2018-03-28T21:59:12Z
dc.identifier
dc.identifierInternational Journal Of Modelling, Identification And Control. , v. 14, n. 01/02/15, p. 121 - 132, 2011.
dc.identifier17466172
dc.identifier10.1504/IJMIC.2011.042346
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80052474163&partnerID=40&md5=3f781969691fc769dc9679e6d35e1683
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107653
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107653
dc.identifier2-s2.0-80052474163
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253606
dc.descriptionThis paper provides an overview of system identification using orthonormal basis function models, such as those based on Laguerre, Kautz, and generalised orthonormal basis functions. The paper is separated in two parts. In this first part, the mathematical foundations of these models as well as their advantages and limitations are discussed within the context of linear and robust system identification. The second part approaches the issues related with non-linear models. The discussions comprise a broad bibliographical survey of the subjects involving linear models within the orthonormal basis functions framework. Theoretical and practical issues regarding the identification of these models are presented and illustrated by means of a case study involving a polymerisation process. Copyright © 2011 Inderscience Enterprises Ltd.
dc.description14
dc.description01/02/15
dc.description121
dc.description132
dc.descriptionAguirre, L.A., Correa, M.V., Cassini, C., Nonlinearities in NARX polynomial models: Representation and estimation (2002) IEE Proc. Control Theory and Applications, 149, pp. 343-348
dc.descriptionAkcay, H., At, N., Membership set identification with periodic inputs and orthonormal regressors (2006) Signal Processing, 86 (12), pp. 3778-3786. , DOI 10.1016/j.sigpro.2006.03.025, PII S016516840600123X, Multimodal Human-Computer Interfaces
dc.descriptionAkcay, H., Ninness, B., Rational basis functions for robust identification from frequency and time-domain measurements (1998) Automatica, 34 (9), pp. 1101-1117. , PII S0005109898000521
dc.descriptionAllgower, F., Zheng, A., (2000) Nonlinear Model Predictive Control, , Birkhauser Verlag, Basel, Switzerland
dc.descriptionAraújo, H.X., Oliveira, G.H.C., An LMI approach for output feedback robust predictive control using orthonormal basis functions (2009) Proc. 48th Conference on Decision and Control, , Shanghai, China
dc.descriptionBalbis, L., Ordys, A.W., Grimble, M.J., Pang, Y., Tutorial introduction to the modelling and control of hybrid systems (2006) International Journal of Modelling, Identification and Control, 2 (4), pp. 259-272
dc.descriptionBelt, H.J.W., Den Brinker, A.C., Optimality condition for truncated generalized Laguerre networks (1995) International Journal of Circuit Theory and Applications, 23 (3), pp. 227-235
dc.descriptionBiagiola, S.I., Figueroa, J.L., Wiener and Hammerstein uncertain models identification (2009) Mathematics and Computers in Simulation, 79 (11), pp. 3296-3313
dc.descriptionBodin, P., Villemoes, L.F., Wahlberg, B., Selection of best orthonormal rational basis (2000) SIAM Journal of Control and Optimization, 38 (4), pp. 995-1032
dc.descriptionBroome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168
dc.descriptionCamacho, E.F., Bordons, C., (1999) Model Predictive Control, , Springer- Verlag, London, UK
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Favier, G., Optimal Laguerre series expansion of discrete Volterra models (2001) Proc. European Control Conference, pp. 372-377. , Porto, Portugal
dc.descriptionCampello, R.J.G.B., Do Amaral, W.C., Favier, G., A note on the optimal expansion of Volterra models using Laguerre functions (2006) Automatica, 42 (4), pp. 689-693. , DOI 10.1016/j.automatica.2005.12.003, PII S0005109806000069
dc.descriptionCampello, R.J.G.B., Favier, G., Amaral, W.C., Optimal expansions of discrete-time Volterra models using Laguerre functions (2004) Automatica, 40 (5), pp. 815-822
dc.descriptionClarke, D.W., (1994) Advances in Model Based Predictive Control, , Oxford University Press, New York, USA
dc.descriptionClowes, G.J., Choice of time-scaling factor for linear system approximation using orthonormal Laguerre functions (1965) IEEE Transactions on Automatic Control, 10 (4), pp. 487-489
dc.descriptionDa Rosa, A., (2009) Identification of Nonlinear Systems Using Volterra Models Based on Kautz Functions and Generalized Orthonormal Functions, , PhD thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil, in Portuguese
dc.descriptionDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions (2007) Automatica, 43 (6), pp. 1084-1091. , DOI 10.1016/j.automatica.2006.12.007, PII S0005109807000738
dc.descriptionDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension (2008) International Journal of Control, 81 (6), pp. 962-975
dc.descriptionDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions (2009) IEEE Transactions on Automatic Control, 54 (12), pp. 2757-2772
dc.descriptionDa Silva, I.N., (1995) Robust Parametric Estimation Using Artificial Neural Networks, , MSc thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil, in Portuguese
dc.descriptionDen Brinker, A.C., Sarroukh, B.E., Pole optimisation in adaptive laguerre filtering (2004) Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp. 649-652. , Montreal, Canada
dc.descriptionDen Brinker, A.C., Optimality conditions for truncated kautz series (1996) IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43 (2), pp. 117-122. , PII S105771309601511X
dc.descriptionDoyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model-based control using second-order Volterra models (1995) Automatica, 31 (5), pp. 697-714
dc.descriptionDoyle III, F.J., Pearson, R.K., Ogunnaike, B.A., (2002) Identification and Control using Volterra Models, , Springer- Verlag, London, UK
dc.descriptionDumont, G.A., Fu, Y., Non-linear adaptive control via Laguerre expansion of Volterra kernels (1993) Int. J. Adaptive Control and Signal Processing, 7 (5), pp. 367-382
dc.descriptionFavier, G., Arruda, L.V.R., Review and comparison of ellipsoidal bounding algorithms (1996) Bounding Approaches to System Identification, pp. 43-68. , Milanese, M. (Ed.), Plenum Press, New York
dc.descriptionFavier, G., Kibangou, A.Y., Campello, R.J.G.B., Nonlinear system modelling by means of orthonormal basis functions (2003) Proc. 2nd IEEE Int. Conference on Signal, Systems, Decision and Information Technology, , Sousse, Tunisia
dc.descriptionFigueroa, J.L., Biagiola, S.I., Agamennoni, O.E., An approach for identification of uncertain Wiener systems (2008) Mathematical and Computer Modelling, 48 (1-2), pp. 305-315. , DOI 10.1016/j.mcm.2007.09.012, PII S0895717707003214
dc.descriptionFu, Y., Dumont, G.A., Optimum time scale for discrete Laguerre network (1993) IEEE Transactions on Automatic Control, 38 (6), pp. 934-938. , DOI 10.1109/9.222305
dc.descriptionGarcia Carlos, E., Prett David, M., Morari Manfred, Model predictive control: Theory and practice - A survey (1989) Automatica, 25 (3), pp. 335-348. , DOI 10.1016/0005-1098(89)90002-2
dc.descriptionHacioglu, R., Williamson, G.A., Reduced complexity Volterra models for nonlinear system identification (2001) Eurasip Journal on Applied Signal Processing, 2001 (4), pp. 257-265. , DOI 10.1155/S1110865701000324
dc.descriptionHenson, M.A., Nonlinear model predictive control: Current status and future directions (1998) Computers and Chemical Engineering, 23 (2), pp. 187-202. , DOI 10.1016/S0098-1354(98)00260-9, PII S0098135498002609
dc.descriptionHeuberger, P.S.C., Van Den Hof, P.M.J., Bosgra, O.H., A generalized orthonormal basis for linear dynamical systems (1995) IEEE Trans. on Automatic Control, 40 (3), pp. 451-465
dc.descriptionHeuberger, P.S.C., Van Den Hof, P.M.J., Wahlberg, B., (2005) Modelling and Identification with Rational Orthogonal Basis Functions, , Springer- Verlag, London, UK
dc.descriptionKautz, W.H., Transient synthesis in the time domain (1954) IRE Transactions on Circuit Theory, 1 (3), pp. 29-39
dc.descriptionKibangou, A.Y., Favier, G., Hassani, M.M., Generalized orthonormal basis selection for expanding quadratic Volterra filters (2003) Proc. 13th IFAC Symposium on System Identification, pp. 1119-1124. , Rotterdam, The Netherlands
dc.descriptionKibangou, A.Y., Favier, G., Hassani, M.M., Selection of generalized orthonormal bases for second-order Volterra filters (2005) Signal Processing, 85 (12), pp. 2371-2385. , DOI 10.1016/j.sigpro.2005.02.020, PII S0165168405001258
dc.descriptionLjung, L., (1999) System Identification: Theory for the User, , 2nd ed. Prentice Hall
dc.descriptionMäkilä, P.M., Approximation of stable systems by Laguerre filters (1990) Automatica, 26 (2), pp. 333-345
dc.descriptionManer, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models (1996) Automatica, 32 (9), pp. 1285-1301. , DOI 10.1016/0005-1098(96)00086-6, PII S0005109896000866
dc.descriptionMasnadi-Shirazi Mohammad, A., Ahmed, N., Optimum Laguerre networks for a class of discrete-time systems (1991) IEEE Transactions on Signal Processing, 39 (9), pp. 2104-2108. , DOI 10.1109/78.134447
dc.descriptionMilanese Mario, Belforte Gustavo, Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators (1982) IEEE Transactions on Automatic Control, AC-27 (2), pp. 408-414
dc.descriptionMo, S.H., Norton, J.P., Fast and robust algorithm to compute exact polytope parameter bounds (1990) Mathematics and Computers in Simulation, 32 (5-6), pp. 481-493. , DOI 10.1016/0378-4754(90)90004-3
dc.descriptionMoreira, V.D., (2006) Robust Model Based Predictive Control of Uncertain Hybrid Systems Integrating Constraints, Logic, and Dynamics Based on Orthonormal Series Function, , PhD thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil, in Portuguese
dc.descriptionNelles, O., (2001) Nonlinear System Identification, , Springer- Verlag, London, UK
dc.descriptionNgia, L.S.H., Separable nonlinear least-squares methods for efficient off-line and on-line modeling of systems using Kautz and Laguerre filters (2001) IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48 (6), pp. 562-579. , DOI 10.1109/82.943327, PII S1057713001075000
dc.descriptionNinness, B., Gustafsson, F., Orthonormal bases for system identification (1995) Proc. 3rd European Control Conference, 1, pp. 13-18. , Rome, Italy
dc.descriptionNinness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Transactions on Automatic Control, 42 (4), pp. 515-521. , PII S0018928697028080
dc.descriptionNinness, B., Hjalmarsson, H., Gustafsson, F., The fundamental role of general orthonormal bases in system identification (1999) IEEE Transactions on Automatic Control, 44 (7), pp. 1384-1406
dc.descriptionSilva Oliveira, E.T.A.M., Optimality conditions for truncated Laguerre networks (1994) IEEE Trans. Signal Processing, 42 (9), pp. 2528-2530
dc.descriptionSilva Oliveira, E.T.A.M., On the determination of the optimal pole position of Laguerre filters (1995) IEEE Trans. Signal Processing, 43 (9), pp. 2079-2087
dc.descriptionSilva Oliveira, E.T.A.M., Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles (1995) IEEE Trans. Automatic Control, 40 (2), pp. 342-346
dc.descriptionOliveira, G.H.C., (1997) Predictive Control for Processes with Structured Uncertainty Based on Orthonormal Series Function, , PhD thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil, in Portuguese
dc.descriptionOliveira, G.H.C., Amaral, W.C., Latawiec, K., CRHPC using Volterra models and orthonormal basis functions: an application to CSTR plants (2003) Proc. IEEE Conference on Control Applications, pp. 718-723. , Istanbul, Turkey
dc.descriptionOliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-572
dc.descriptionOliveira, G.H.C., Da Rosa, A., Campello, R.J.G.B., Machado, J.M., Amaral, W.C., An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part II: Nonlinear models International Journal of Modelling, Identification and Control, , forthcoming
dc.descriptionOliveira, G.H.C., Favier, G., Dumont, G., Amaral, W.C., Uncertainties identification using Laguerre models with application to paper machine headbox (1998) Proc. of IEEE/IMACS Multiconference on Computational Engineering in Systems Applications - CESA, Symposium on Control Optimization and Supervision, 1, pp. 329-334. , Tunisia
dc.descriptionPatwardhan, S.C., Shah, S.L., From data to diagnosis and control using generalized orthonormal basis filters. Part I: Development of state observers (2005) Journal of Process Control, 15 (7), pp. 819-835. , DOI 10.1016/j.jprocont.2004.08.006, PII S0959152405000211
dc.descriptionSchetzen, M., (1980) The Volterra and Wiener Theories of Nonlinear Systems, , Krieger Publishing Company, Malabar, Florida, USA
dc.descriptionSjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., Hjalmarsson, H., Juditsky, A., Nonlinear black-box modeling in system identification: A unified overview (1995) Automatica, 31 (12), pp. 1691-1724
dc.descriptionSoeterboek, R., (1992) Predictive Control: A Unified Approach, , Prentice Hall, Upper Saddle River, NJ, USA
dc.descriptionTakenaka, S., On the orthogonal functions and a new formula of interpolation (1925) Japanese Journal of Mathematics, 2, pp. 129-145
dc.descriptionTanguy, N., Morvan, R., Vilbe, P., Calvez, L.C., Online optimization of the time scale in adaptive Laguerre-based filters (2000) IEEE Transactions on Signal Processing, 48 (4), pp. 1184-1187. , DOI 10.1109/78.827551
dc.descriptionTanguy, N., Morvan, R., Vilbe, P., Calvez, L.-C., Pertinent choice of parameters for discrete Kautz approximation (2002) IEEE Transactions on Automatic Control, 47 (5), pp. 783-787. , DOI 10.1109/TAC.2002.1000273, PII S0018928602047633
dc.descriptionTanguy, N., Vilbé, P., Calvez, L.C., Optimum choice of free parameter in orthonormal approximations (1995) IEEE Trans. on Automatic Control, 40 (10), pp. 1811-1813
dc.descriptionVan Den Bosch, P.P.J., Van Der Klauw, A.C., (1994) Modeling Identification and Simulation of Dynamical System, , CRC Press Inc., Boca Raton, Florida, USA
dc.descriptionVan Den Hof, P.M.J., Heuberger, P.S.C., Bokor, J., System identification with generalized orthonormal basis functions (1995) Automatica, 31 (12), pp. 1821-1834
dc.descriptionWahlberg, B., System identification using Laguerre models (1991) IEEE Trans. on Automatic Control, 36 (5), pp. 551-562
dc.descriptionWahlberg, B., System identification using Kautz models (1994) IEEE Trans. on Automatic Control, 39 (6), pp. 1276-1282
dc.descriptionWahlberg, B., Ljung, L., Hard frequency-domain model error bounds from least-squares like identification techniques (1992) IEEE Trans. on Automatic Control, 37 (7), pp. 900-912
dc.descriptionWahlberg, B., Makila, P.M., On approximation of stable linear dynamical systems using Laguerre and Kautz functions (1996) Automatica, 32 (5), pp. 693-708. , DOI 10.1016/0005-1098(95)00198-0
dc.descriptionWalter, E., Piet-Lahanier, H., Estimation of parameter bounds from bounded-error data: A survey (1990) Mathematics and Computers in Simulation, 32 (5-6), pp. 449-468
dc.descriptionWiener, N., (1958) Nonlinear Problems in Random, , Theory, MIT Press, Cambridge, MA, USA
dc.descriptionZervos, C.C., Dumont, G.A., Deterministic adaptive control based on Laguerre series representation (1988) Int. J. Control, 48 (6), pp. 2333-2359
dc.descriptionZhu, Y., System identification for process control: Recent experience and outlook (2006) International Journal of Modelling, Identification and Control, 6 (2), pp. 89-103
dc.descriptionZiaei, K., Wang, D.W.L., Application of orthonormal basis functions for identification of flexible-link manipulators (2006) Control Engineering Practice, 14 (2), pp. 99-106. , DOI 10.1016/j.conengprac.2004.11.020, PII S0967066105000365
dc.languageen
dc.publisher
dc.relationInternational Journal of Modelling, Identification and Control
dc.rightsfechado
dc.sourceScopus
dc.titleAn Introduction To Models Based On Laguerre, Kautz And Other Related Orthonormal Functions - Part I: Linear And Uncertain Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución