Artículos de revistas
ß-hydroxy-ß- Methylbutyrate (hm) Supplementation Stimulates Skeletal Muscle Hypertrophy In Rats Via The Mtor Pathway
Registro en:
Nutrition And Metabolism. , v. 8, n. , p. - , 2011.
17437075
10.1186/1743-7075-8-11
2-s2.0-79951851521
Autor
Pimentel G.D.
Rosa J.C.
Lira F.S.
Zanchi N.E.
Ropelle E.R.
Oyama L.M.
Oller Do Nascimento C.M.
De Mello M.T.
Tufik S.
Santos R.V.
Institución
Resumen
ß-Hydroxy-ß- methylbutyrate (HM) supplementation is used to treat cancer, sepsis and exercise-induced muscle damage. However, its effects on animal and human health and the consequences of this treatment in other tissues (e.g., fat and liver) have not been examined. The purpose of this study was to evaluate the effects of HM supplementation on skeletal muscle hypertrophy and the expression of proteins involved in insulin signalling. Rats were treated with HM (320 mg/kg body weight) or saline for one month. The skeletal muscle hypertrophy and insulin signalling were evaluated by western blotting, and hormonal concentrations were evaluated using ELISAs. HM supplementation induced muscle hypertrophy in the extensor digitorum longus (EDL) and soleus muscles and increased serum insulin levels, the expression of the mammalian target of rapamycin (mTOR) and phosphorylation of p70S6K in the EDL muscle. Expression of the insulin receptor was increased only in liver. Thus, our results suggest that HM supplementation can be used to increase muscle mass without adverse health effects. © 2011 Pimentel et al; licensee BioMed Central Ltd. 8
Hider, R.C., Fern, E.B., London, D.R., Relationship between intracellular amino acids and protein synthesis in the extensor digitorum longus muscle of rats (1969) Biochem J, 114, pp. 171-8. , 5822066 Nissen, S., Sharp, R., Ray, M., Rathmacher, J.A., Rice, D., Fuller Jr., J.C., Connelly, A.S., Abumrad, N., Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training (1996) Journal of Applied Physiology, 81 (5), pp. 2095-2104 Nissen, S.L., Abumrad, N.N., Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB) (1997) Journal of Nutritional Biochemistry, 8 (6), pp. 300-311. , DOI 10.1016/S0955-2863(97)00048-X, PII S095528639700048X Caperuto, E.C., Tomatieli, R.V., Colquhoun, A., Seelaender, M.C.L., Costa Rosa, L.F.B.P., β-Hydoxy-β-methylbutyrate supplementation affects Walker 256 tumor-bearing rats in a time-dependent manner (2007) Clinical Nutrition, 26 (1), pp. 117-122. , DOI 10.1016/j.clnu.2006.05.007, PII S0261561406001154 Panton, L.B., Rathmacher, J.A., Baier, S., Nutritional supplementation of the leucine metabolite -Hydroxy - Methylbutyrate (HMB) during resistance training (2000) Nutrition, 16, pp. 734-739. , 10.1016/S0899-9007(00)00376-2. 10978853 Jowko, E., Ostaszewski, P., Jank, M., Sacharuk, J., Zieniewicz, A., Wilczak, J., Nissen, S., Creatine and β-hydroxy-β-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program (2001) Nutrition, 17 (7-8), pp. 558-566. , DOI 10.1016/S0899-9007(01)00540-8, PII S0899900701005408 Nunes, E.A., Kuczera, D., Brito, G.A.P., Bonatto, S.J.R., Yamazaki, R.K., Tanhoffer, R.A., Mund, R.C., Fernandes, L.C., β-Hydroxy-β-methylbutyrate supplementation reduces tumor growth and tumor cell proliferation ex vivo and prevents cachexia in Walker 256 tumor-bearing rats by modifying nuclear factor-κB expression (2008) Nutrition Research, 28 (7), pp. 487-493. , DOI 10.1016/j.nutres.2008.04.006, PII S0271531708001073 Clark, R.H., Feleke, G., Din, M., Nutritional treatment for acquired immunodeficiency virus-associated wasting using beta-hydroxy beta-methylbutyrate, glutamine, and arginine: A randomized, double-blind, placebo-controlled study (2000) J Parenter Enteral Nutr, 24, pp. 133-139. , 10.1177/0148607100024003133 Eley, H.L., Russel, S.T., Tisdale, M.J., Attenuation of depression of muscle protein synthesis induced by lipopolysaccharide, tumor necrosis factor, and angiotensin II by -hydroxy - Methylbutyrate (2008) Am J Physiol Endocrinol Metab, 295, pp. 1409-1416. , 10.1152/ajpendo.90530.2008 Zanchi, N.E., Gerlinger-Romero, F., Guimares-Ferreira, F., HMB supplementation: Clinical and athletic performance-related effects and mechanisms of action (2010) Amino Acids, , 20607321 Sabourin, P.J., Bieber, L.L., Formation of β-hydroxyisovalerate by an α-ketoisocaproate oxygenase in human liver (1983) Metabolism: Clinical and Experimental, 32 (2), pp. 160-164. , DOI 10.1016/0026-0495(83)90223-8 Nissen, S.L., Abumrad, N.N., Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB) (1997) Journal of Nutritional Biochemistry, 8 (6), pp. 300-311. , DOI 10.1016/S0955-2863(97)00048-X, PII S095528639700048X Wilson, G.J., Wilson, J.M., Manninen, A.H., Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review (2008) Nutrition and Metabolism, 5 (1), p. 1. , DOI 10.1186/1743-7075-5-1 Marcora, S., Lemmey, A., Maddison, P., Dietary treatment of rheumatoid cachexia with β-hydroxy-β- methylbutyrate, glutamine and arginine: A randomised controlled trial (2005) Clinical Nutrition, 24 (3), pp. 442-454. , DOI 10.1016/j.clnu.2005.01.006, PII S0261561405000208 Paddon-Jones, D., Keech, A., Jenkins, D., Short-term beta-hydroxy-beta-methylbutyrate supplementation does not reduce symptoms of eccentric muscle damage (2001) Int J Sport Nutr Exerc Metab, 11, pp. 442-450. , 11915779 Wilson, J.M., Kim, J.S., Lee, S.R., Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage (2009) Nutr Metab, 4, pp. 6-6. , 10.1186/1743-7075-6-6 Holecek, M., Muthny, T., Kovarik, M., Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues (2009) Food Chem Toxicol, 47, pp. 255-259. , 10.1016/j.fct.2008.11.021. 19056452 Friedewald, T., Levy, R.I., Frederickson, D.S., Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge (1972) Clin Chem, 18, pp. 499-502. , 4337382 Tsimihodimos, V., Gazi, I., Kostara, C., Tselepis, A.D., Elisaf, M., Plasma lipoproteins and triacylglycerol are predictors of small, dense LDL particles (2007) Lipids, 42 (5), pp. 403-409. , DOI 10.1007/s11745-007-3050-8 Folch, J., Lees, M., Sloane Stanley, G.H., A simple method for the isolation and purification of total lipides from animal tissues (1957) J Biol Chem, 226, pp. 497-509. , 13428781 Lynch, C.J., Halle, B., Fujii, H., Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR (2003) Am J Physiol Endocrinol Metab, 285, pp. 854-863 Chotechuang, N., Azzout-Marniche, D., Bos, C., MTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat (2009) Am J Physiol Endocrinol Metab, 297, pp. 1313-1323. , 10.1152/ajpendo.91000.2008 Lang, C.H., Frost, R.A., Bronson, S.K., Skeletal muscle protein balance in mTOR heterozygous mice in response to inflammation and leucine (2010) Am J Physiol Endocrinol Metab, 298, pp. 1283-1294. , 10.1152/ajpendo.00676.2009 Ostaszewski, P., Kostiuk, S., Balasinska, B., The leucine metabolite 3-hydroxy-3-methylbutyrate (HMB) modifies protein turnover in muscles of laboratory rats and domestic chickens in vitro (2000) J Animal Physiol Animal Nutr, 84, pp. 1-8. , 10.1046/j.1439-0396.2000.00272.x Bolster, D.R., Crozier, S.J., Kimball, S.R., Jefferson, L.S., AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling (2002) Journal of Biological Chemistry, 277 (27), pp. 23977-23980. , DOI 10.1074/jbc.C200171200 Atherton, P.J., Babraj, J., Smith, K., Singh, J., Rennie, M.J., Wackerhage, H., Selective activation of AMPK-PGC-1α or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation (2005) FASEB Journal, 19 (7), pp. 786-788. , DOI 10.1096/04-2179fje Lai, K.-M.V., Gonzalez, M., Poueymirou, W.T., Kline, W.O., Na, E., Zlotchenko, E., Stitt, T.N., Glass, D.J., Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy (2004) Molecular and Cellular Biology, 24 (21), pp. 9295-9304. , DOI 10.1128/MCB.24.21.9295-9304.2004 Takahashi, A., Kureishi, Y., Yang, J., Luo, Z., Guo, K., Mukhopadhyay, D., Ivashchenko, Y., Walsh, K., Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth (2002) Molecular and Cellular Biology, 22 (13), pp. 4803-4814. , DOI 10.1128/MCB.22.13.4803-4814.2002 Izumiya, Y., Hopkins, T., Morris, C., Sato, K., Zeng, L., Viereck, J., Hamilton, J.A., Walsh, K., Fast/Glycolytic Muscle Fiber Growth Reduces Fat Mass and Improves Metabolic Parameters in Obese Mice (2008) Cell Metabolism, 7 (2), pp. 159-172. , DOI 10.1016/j.cmet.2007.11.003, PII S1550413107003385 Norton, L.E., Layman, D.K., Bunpo, P., The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats (2009) J Nutr, 582, pp. 1103-1109 Fujita, S., Dreyer, H.C., Drummond, M.J., Glynn, E.L., Cadenas, J.G., Yoshizawa, F., Volpi, E., Rasmussen, B.B., Nutrient signalling in the regulation of human muscle protein synthesis (2007) Journal of Physiology, 582 (2), pp. 813-823. , DOI 10.1113/jphysiol.2007.134593 Norton, L.E., Layman, D.K., Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise (2006) J Nutr, 136, pp. 533-537 Kornasio, R., Riederer, I., Butler-Browne, G., Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways (2009) Biochim Biophys Acta, 1793, pp. 755-763. , 10.1016/j.bbamcr.2008.12.017. 19211028 Anthony, T.G., Anthony, J.C., AMPing down leucine action in skeletal muscle (2008) J Nutr, 138, pp. 1887-1894. , 18806097 Zanchi, N.E., Lancha, A.H., Mechanical stimuli of skeletal muscle: Implications on mTOR/p70s6k and protein synthesis (2008) European Journal of Applied Physiology, 102 (3), pp. 253-263. , DOI 10.1007/s00421-007-0588-3 Zanchi, N.E., Filho, M.A., Felitti, V., Glucocorticoids: Extensive physiological actions modulated through multiple mechanisms of gene regulation (2010) J Cell Physiol, 224, pp. 311-5. , 10.1002/jcp.22141. 20432441 Olza, J., Mesa, M.D., Poyatos, R.M., A specific protein-enriched enteral formula decreases cortisolemia and improves plasma albumin and amino acid concentrations in elderly patients (2010) Nutr Metab, 7, p. 58. , 10.1186/1743-7075-7-58 Guo, K., Yu, Y.H., Hou, J., Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus (2010) Nutr Metab, 7, p. 57. , 10.1186/1743-7075-7-57 Pedrosa, R.G., Donato, J., Pires, I.S., Leucine supplementation favors liver protein status but does not reduce body fat in rats during 1 week of food restriction (2010) Appl Physiol Nutr Metab, 35, pp. 180-183. , 10.1139/H09-132. 20383228