dc.creatorCheng G.
dc.creatorSiles P.F.
dc.creatorBi F.
dc.creatorCen C.
dc.creatorBogorin D.F.
dc.creatorBark C.W.
dc.creatorFolkman C.M.
dc.creatorPark J.-W.
dc.creatorEom C.-B.
dc.creatorMedeiros-Ribeiro G.
dc.creatorLevy J.
dc.date2011
dc.date2015-06-30T20:21:12Z
dc.date2015-11-26T14:48:22Z
dc.date2015-06-30T20:21:12Z
dc.date2015-11-26T14:48:22Z
dc.date.accessioned2018-03-28T21:59:08Z
dc.date.available2018-03-28T21:59:08Z
dc.identifier
dc.identifierNature Nanotechnology. , v. 6, n. 6, p. 343 - 347, 2011.
dc.identifier17483387
dc.identifier10.1038/nnano.2011.56
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79960125201&partnerID=40&md5=0d73bbf895a78ca83360e173541dd75b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107657
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107657
dc.identifier2-s2.0-79960125201
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253586
dc.descriptionDevices that confine and process single electrons represent an important scaling limit of electronics1,2. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties3-5. Here, we use an atomic force microscope tip to reversibly 'sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides6-8. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ∼1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.
dc.description6
dc.description6
dc.description343
dc.description347
dc.descriptionKastner, M.A., The single-electron transistor (1992) Rev. Mod. Phys., 64, pp. 849-858
dc.descriptionHanson, R., Kouwenhoven, L.P., Petta, J.R., Tarucha, S., Vandersypen, L.M.K., Spins in few-electron quantum dots (2007) Reviews of Modern Physics, 79 (4), pp. 1217-1265. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: RevModPhys.79.1217&metadataPrefix=oai_apsmeta_2, DOI 10.1103/RevModPhys.79.1217
dc.descriptionKlein, D.L., Rotht, R., Lim, A.K.L., Alivisatosti, A.P., McEuen, P.L., A single-electron transistor made from a cadmium selenide nanocrystal (1997) Nature, 389 (6652), pp. 699-701. , DOI 10.1038/39535
dc.descriptionKubatkin, S., Danilov, A., Hjort, M., Cornil, J., Bredas, J.-L., Stuhr-Hansen, N., Hedegard, P., Bjornholm, T., Single-electron transistor of a single organic molecule with access to several redox states (2003) Nature, 425 (6959), pp. 698-701. , DOI 10.1038/nature02010
dc.descriptionStampfer, C., Tunable graphene single electron transistor (2008) Nano Lett., 8, pp. 2378-2383
dc.descriptionOhtomo, A., Hwang, H.Y., A high-mobility electron gas at the LaAlO3/SrtiO3 heterointerface (2004) Nature, 427 (6973), pp. 423-426. , DOI 10.1038/nature02308
dc.descriptionThiel, S., Hammerl, G., Schmehl, A., Schneider, C.W., Mannhart, J., Tunable quasi-two-dimensional electron gases in oxide heterostructures (2006) Science, 313 (5795), pp. 1942-1945. , DOI 10.1126/science.1131091
dc.descriptionCen, C., Thiel, S., Hammerl, G., Schneider, C.W., Andersen, K.E., Hellberg, C.S., Mannhart, J., Levy, J., Nanoscale control of an interfacial metal-insulator transition at room temperature (2008) Nature Materials, 7 (4), pp. 298-302. , DOI 10.1038/nmat2136, PII NMAT2136
dc.descriptionBi, F., Water-cycle mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface (2010) Appl. Phys. Lett., 97, p. 173110
dc.descriptionCen, C., Thiel, S., Mannhart, J., Levy, J., Oxide nanoelectronics on demand (2009) Science, 323, pp. 1026-1030
dc.descriptionBogorin, D.F., Nanoscale rectification at the LaAlO3/SrTiO3 interface (2010) Appl. Phys. Lett., 97, p. 013102
dc.descriptionIrvin, P., Rewritable nanoscale oxide photodetector (2010) Nature Photon., 4, pp. 849-852
dc.descriptionCen, C., Bogorin, D.F., Levy, J., Thermal activation and quantum field emission in a sketch-based oxide nano transistor (2010) Nanotechnology, 21, p. 475201
dc.descriptionHaeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Schlom, D.G., Room-temperature ferroelectricity in strained SrTiO3 (2004) Nature, 430 (7001), pp. 758-761. , DOI 10.1038/nature02773
dc.descriptionWarusawithana, M.P., A ferroelectric oxide made directly on silicon (2009) Science, 324, pp. 367-370
dc.descriptionJang, H.W., Ferroelectricity in strain-free SrTiO3 thin films (2010) Phys. Rev. Lett., 104, p. 197601
dc.descriptionZubko, P., Catalan, G., Buckley, A., Welche, P.R.L., Scott, J.F., Strain-gradientinduced polarization in SrTiO3 single crystals (2007) Phys. Rev. Lett., 99, p. 167601
dc.descriptionSingh-Bhalla, G., Built-in and induced polarization across LaAlO3/SrTiO 3 heterojunctions (2010) Nature Phys., 7, pp. 80-86
dc.descriptionBockrath, M., Cobden, D.H., McEuen, P.L., Chopra, N.G., Zettl, A., Thess, A., Smalley, R.E., Single-electron transport in ropes of carbon nanotubes (1997) Science, 275 (5308), pp. 1922-1925. , DOI 10.1126/science.275.5308.1922
dc.descriptionCaviglia, A.D., Electric field control of the LaAlO3/SrTiO3 interface ground state (2008) Nature, 456, pp. 624-627
dc.descriptionTarucha, S., Austing, D.G., Honda, T., Van Der Hage, R.J., Kouwenhoven, L.P., Shell filling and spin effects in a few electron quantum dot (1996) Physical Review Letters, 77 (17), pp. 3613-3616
dc.descriptionKouwenhoven, L.P., Oosterkamp, T.H., Danoesastro, M.W.S., Eto, M., Austing, D.G., Honda, T., Tarucha, S., Excitation spectra of circular, few-electron quantum dots (1997) Science, 278 (5344), pp. 1788-1792. , DOI 10.1126/science.278.5344.1788
dc.descriptionFricke, M., Lorke, A., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M., Shell structure and electron-electron interaction in self-assembled InAs quantum dots (1996) Europhys. Lett., 36, pp. 197-202
dc.descriptionMüller, K.A., Burkard, H., SrTiO3: An intrinsic quantum paraelectric below 4 K (1979) Phys. Rev., B19, pp. 3593-3602
dc.descriptionGoldhaber-Gordon, D., Shtrikmant, H., Mahalu, D., Abusch-Magder, D., Meirav, U., Kastner, M.A., Kondo effect in a single-electron transistor (1998) Nature, 391 (6663), pp. 156-159. , DOI 10.1038/34373
dc.descriptionMorello, A., Single-shot readout of an electron spin in silicon (2010) Nature, 467, pp. 687-691
dc.descriptionPark, J.W., Creation of a two-dimensional electron gas at an oxide interface on silicon (2010) Nat. Commun., 1, p. 94
dc.descriptionKnobel, R.G., Cleland, A.N., Nanometre-scale displacement sensing using a single electron transistor (2003) Nature, 424 (6946), pp. 291-293. , DOI 10.1038/nature01773
dc.descriptionLoss, D., Divincenzo, D.P., Quantum computation with quantum dots (1998) Physical Review A - Atomic, Molecular, and Optical Physics, 57 (1), pp. 120-126
dc.descriptionJaksch, D., Zoller, P., The cold atom Hubbard toolbox (2005) Annals of Physics, 315 (1), pp. 52-79. , DOI 10.1016/j.aop.2004.09.010, PII S0003491604001782
dc.languageen
dc.publisher
dc.relationNature Nanotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleSketched Oxide Single-electron Transistor
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución