dc.creatorBezerra F.
dc.creatorWainer J.
dc.date2011
dc.date2015-06-30T20:20:53Z
dc.date2015-11-26T14:48:22Z
dc.date2015-06-30T20:20:53Z
dc.date2015-11-26T14:48:22Z
dc.date.accessioned2018-03-28T21:59:07Z
dc.date.available2018-03-28T21:59:07Z
dc.identifier
dc.identifierInternational Journal Of Business Process Integration And Management. , v. 5, n. 2, p. 121 - 129, 2011.
dc.identifier17418763
dc.identifier10.1504/IJBPIM.2011.040204
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79957451614&partnerID=40&md5=bd7cb2bc0e1251c7cb05bc61f8ba13f4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107634
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107634
dc.identifier2-s2.0-79957451614
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253584
dc.descriptionIn the last years, some large companies have been involved in scandals related to financial mismanagement, which represented a large financial damage to their stockholders. To recover market confidence, certifications for best practices of governance were developed, and in some cases, harder laws were implemented. Companies adhered to these changes as a response to the market, deploying process aware systems (PAS) and adopting the best practices of governance. However, companies demand a rapid response to strategic changes or changes in business models between partners, which may impose serious drawbacks to the adoption of normative PAS to the competitiveness of these companies. Thus, while companies need flexible PAS, flexibility may compromise security. To re-balance the trade-off between security and flexibility, we present in this work an anomaly detection algorithm for PAS. The identification of anomalous events can help the adoption of flexible PAS without the loss of security properties. Copyright © 2011 Inderscience Enterprises Ltd.
dc.description5
dc.description2
dc.description121
dc.description129
dc.descriptionAgarwal, D.K., An empirical Bayes approach to detect anomalies in dynamic multidimensional arrays (2005) ICDM, pp. 26-33
dc.descriptionAgrawal, R., Gunopulos, D., Leymann, F., Mining process models from workflow logs (1998) EDBT '98: Proceedings of the 6th International Conference on Extending Database Technology, (1377), pp. 469-483. , Advances in Database Technology - EDDT'98
dc.descriptionBezerra, F., Wainer, J., Towards detecting fraudulent executions in business process aware systems (2007) WfPM 2007 - Workshop on Workflows and Process Management, in Conjunction with SYNASC 2007, , Timisoara, Romania
dc.descriptionBezerra, F., Wainer, J., Um método de detec cão de anomalias em logs de processos de negócios (2007) I Brazilian Workshop on Business Process Management, SBC, in Conjunction with Webmedia 2007, , de Toledo, M. B. F. and Madeira, E. M. Eds.: Gramado, RS, Brazil
dc.descriptionBezerra, F., Wainer, J., Anomaly detection algorithms in business process logs (2008) 10th International Conference on Enterprise Information Systems, pp. 11-18. , Barcelona, Spain
dc.descriptionBezerra, F., Wainer, J., Anomaly detection algorithms in logs of process aware systems (2008) SAC '08: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 951-952. , ACM, New York, NY, USA
dc.descriptionCook, J.E., Wolf, A.L., Discovering models of software processes from event-based data (1998) ACM Transactions on Software Engineering and Methodology, 7 (3), pp. 215-249
dc.descriptionCook, J.E., Du, Z., Liu, C., Wolf, A.L., Discovering models of behavior for concurrent workflows (2004) Computers in Industry, 53 (3), pp. 297-319
dc.descriptionDe Medeiros, A.K.A., (2006) Genetic Process Mining, , PhD thesis, Technische Universiteit Eindhoven, Eindhoven, ISBN 978-90-386-0785-6
dc.descriptionDe Medeiros, A.K.A., Van Der Aalst, W.M.P., Weijters, A., Workflow mining: Current status and future directions (2003) On the Move to Meaningful Internet Systems, LNCS, 2888. , Meersman, R., Tari, Z. and Schmidt, D. Eds
dc.descriptionDe Medeiros, A.K.A., Weijters, A.J.M.M., Van Der Aalst, W.M.P., Genetic process mining: A basic approach and its challenges (2006) Lecture Notes in Computer Science, 3812, pp. 203-215. , ISSN 0302-9743
dc.descriptionDonoho, S., Early detection of insider trading in option markets (2004) KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420-429. , KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
dc.descriptionFawcett, T., (2004) Roc Graphs: Notes and Practical Considerations for Researchers
dc.descriptionFawcett, T., Provost, F., Adaptive fraud detection (1997) Data Mining and Knowledge Discovery, 1, pp. 291-316
dc.descriptionHammori, M., Herbst, J., Kleiner, N., Interactive workflow mining-requirements, concepts and implementation (2006) Data and Knowledge Engineering, 56 (1), pp. 41-63. , DOI 10.1016/j.datak.2005.02.006, PII S0169023X05000273, Business Process Management
dc.descriptionHerbst, J., Karagiannis, D., Workflow mining with involve (2004) Computers in Industry, 53 (3), pp. 245-264
dc.descriptionLee, W., Xiang, D., Information-theoretic measures for anomaly detection (2001) IEEE Symposium on Security and Privacy
dc.descriptionMaruster, L., Van Der Aalst, W.M.P., Weijters, T., Van Den Bosch, A., Daelemans, W., Automated discovery of workflow models from hospital data (2001) Proceedings of the 13th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2001), pp. 183-190. , Krse, B., Rijke, M., Schreiber, G. and Someren, M. Eds
dc.descriptionNoble, C.C., Cook, D.J., Graph-based anomaly detection (2003) KDD '03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631-636. , ACM Press, New York, NY, USA
dc.descriptionPandit, S., Chau, D.H., Wang, S., Faloutsos, C., Netprobe: A fast and scalable system for fraud detection in online auction networks (2007) 16th International World Wide Web Conference, WWW2007, pp. 201-210. , DOI 10.1145/1242572.1242600, 16th International World Wide Web Conference, WWW2007
dc.descriptionPinter, S.S., Golani, M., Discovering workflow models from activities' lifespans (2004) Computers in Industry, 53 (3), pp. 283-296
dc.descriptionRozinat, A., Van Der Aalst, W.M.P., Conformance checking of processes based on monitoring real behavior (2008) Information Systems, 33 (1), pp. 64-95. , DOI 10.1016/j.is.2007.07.001, PII S030643790700049X
dc.descriptionRozinat, A., Van Der Aalst, W.M.P., Conformance testing: Measuring the fit and appropriateness of event logs and process models (2005) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3812, pp. 163-176. , Business Process Management Workshops - BPM 2005 International Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Revised Selected Papers
dc.descriptionRozinat, A., Medeiros, A.A., Günther, C., Weijters, A., Van Der Aalst, W.M.P., Towards an evaluating framework for process mining algorithms (2007) Technical Report, Technische Universiteit Eindhoven, , BETA Research School for Operations Management and Logistics
dc.descriptionSabhnani, R., Neill, D., Moore, A., Detecting anomalous patterns in pharmacy retail data (2005) Proceedings of the KDD 2005 Workshop on Data Mining Methods for Anomaly Detection
dc.descriptionSchimm, G., Mining exact models of concurrent workflows (2004) Comput. Ind., 53 (3), pp. 265-281
dc.descriptionVan Der Aalst, W.M.P., De Medeiros, A.K.A., Process mining and security: Detecting anomalous process executions and checking process conformance (2005) Electronic Notes in Theoretical Computer Science, 121 (SPEC. ISS.), pp. 3-21. , DOI 10.1016/j.entcs.2004.10.013, PII S1571066105000228
dc.descriptionVan Der Aalst, W.M.P., Weijters, A.J.M.M., Process mining: A research agenda (2004) Computers in Industry, 53
dc.descriptionVan Der Aalst, W.M.P., Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M., Workflow mining: A survey of issues and approaches (2003) Data Knowl. Eng., 47 (2), pp. 237-267
dc.descriptionVan Der Aalst, W.M.P., Weijters, T., Maruster, L., Workflow mining: Discovering process models from event logs (2004) IEEE Trans. Knowl. Data Eng., 16 (9), pp. 1128-1142
dc.descriptionWainer, J., Kim, K., Ellis, C.A., A workflow mining method through model rewriting (2005) Groupware: Design, Implementation, and Use: 11th International Workshop, CRIWG 2005, 3706, pp. 184-191. , Fuks, H., Lukosch, S. and Salgado, A. C. Eds.:, Porto de Galinhas, Brazil
dc.descriptionYang, W.-S., Hwang, S.-Y., A process-mining framework for the detection of healthcare fraud and abuse (2006) Expert Systems with Applications, 31 (1), pp. 56-68
dc.languageen
dc.publisher
dc.relationInternational Journal of Business Process Integration and Management
dc.rightsfechado
dc.sourceScopus
dc.titleFraud Detection In Process Aware Systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución