dc.creatorFoss J.N.
dc.creatorDeMartino M.
dc.creatorNoronha M.H.
dc.creatorSantos G.
dc.date2011
dc.date2015-06-30T20:20:09Z
dc.date2015-11-26T14:48:15Z
dc.date2015-06-30T20:20:09Z
dc.date2015-11-26T14:48:15Z
dc.date.accessioned2018-03-28T21:58:58Z
dc.date.available2018-03-28T21:58:58Z
dc.identifier
dc.identifierMathematische Zeitschrift. , v. 267, n. 1, p. 403 - 411, 2011.
dc.identifier255874
dc.identifier10.1007/s00209-009-0625-5
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79551605559&partnerID=40&md5=35a2414da99795fbb91da4fee4d607b9
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107599
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107599
dc.identifier2-s2.0-79551605559
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253551
dc.descriptionWe show that a complete, codimension three submanifold M of nonnegative sectional curvature that isometrically splits as M̄ × ℝ has nonnegative curvature operator. We apply this result to obtain a classification of codimension three nonflat manifolds of nonnegative sectional curvature and infinite fundamental group. © 2009 Springer-Verlag.
dc.description267
dc.description1
dc.description403
dc.description411
dc.descriptionBaldin, Y., Mercuri, F., Isometric immersions in codimension two with nonnegative curvature (1980) Math. Z., 173, pp. 111-117
dc.descriptionBaldin, Y., Mercuri, F., Two nonorientable submanifolds with nonnegative curvature (1988) Proc. AMS, 103, pp. 918-920
dc.descriptionBishop, R.L., The holonomy algebra of immersed manifolds of codimension two (1971) J. Differ. Geom, 6, pp. 119-128
dc.descriptionBöhm, C., Wilking, B., Manifolds with positive curvature operators are space forms (2008) Ann. Math, 167 (2-3), pp. 1079-1097
dc.descriptionCheeger, J., Gromoll, D., On the structure of complete manifolds of nonnegative curvature (1972) Ann. Math, 96 (2), pp. 413-443
dc.descriptionDajczer, M., (1990) Submanifolds and Isometric Immersions. Mathematics Lecture Series 13, , Houston: Publish or Perish Inc
dc.descriptionGuijarro, L., Isometric Immersions without Positive Ricci Curvature, Contemporary Mathematics, Global differential geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000) (2001) Contemporary Mathematics, 288, pp. 339-342. , American Mathematical Society, Providence
dc.descriptionHamilton, R., Four-manifolds with positive curvature operator (1986) J. Differ. Geom, 24, pp. 153-179
dc.descriptionHartman, P., On the isometric immersion in Euclidean space of manifolds with nonnegative sectional curvatures (1970) Trans. AMS, 147, pp. 529-540
dc.descriptionKleinjohann, N., Walter, R., Nonnegativity of the Curvature Operator and Isotropy for Isometric Immersions (1982) Math. Z, 181, pp. 129-142
dc.descriptionMercuri, F., Noronha, M.H., On the topology of complete Riemannian manifolds with nonnegative curvature operator (1993) Rendiconti Semin. Facolta Sci. Univ. Cagliari., 63, pp. 1-23
dc.descriptionMicallef, M., Moore, J.D., Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes (1988) Ann. Math., 127, pp. 199-227
dc.descriptionNoronha, M.H., A splitting theorem for complete manifolds with nonnegative curvature operator (1989) Proc. AMS, 105, pp. 979-985
dc.descriptionNoronha, M.H., Nonnegatively curved submanifolds in codimension two (1992) Trans. AMS, 332, pp. 351-364
dc.descriptionSiu, Y.T., Yau, S.T., Compact Kähler manifolds with positive bisectional curvature (1980) Invent. Math, 59, pp. 189-204
dc.descriptionToponogov, V.A., Spaces with straight lines (1964) Am. Math. Soc. Trans., 37, pp. 287-290
dc.descriptionWeinstein, A., Positively curved n-manifolds in ℝn+2 (1970) J. Differ. Geom, 4, pp. 1-4
dc.languageen
dc.publisher
dc.relationMathematische Zeitschrift
dc.rightsfechado
dc.sourceScopus
dc.titleCodimension Three Nonnegatively Curved Submanifolds With Infinite Fundamental Group
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución