dc.creatorJardim M.
dc.creatorVerbitsky M.
dc.date2011
dc.date2015-06-30T20:17:30Z
dc.date2015-11-26T14:47:46Z
dc.date2015-06-30T20:17:30Z
dc.date2015-11-26T14:47:46Z
dc.date.accessioned2018-03-28T21:58:22Z
dc.date.available2018-03-28T21:58:22Z
dc.identifier
dc.identifierAdvances In Mathematics. , v. 227, n. 4, p. 1526 - 1538, 2011.
dc.identifier18708
dc.identifier10.1016/j.aim.2011.03.012
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79955968373&partnerID=40&md5=6cee3e3a324f3ebdf3e9b7741817c28f
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107457
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107457
dc.identifier2-s2.0-79955968373
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253407
dc.descriptionWe show that the moduli space M of framed instanton bundles on C{double-strcuk}P{double-strcuk}3 is isomorphic (as a complex manifold) to a subvariety in the moduli of rational curves of the twistor space of the moduli space of framed instantons on R{double-strcuk}4. We then use this characterization to prove that M is equipped with a torsion-free affine connection with holonomy in Sp(2n,C{double-struck}). © 2011 Elsevier Inc.
dc.description227
dc.description4
dc.description1526
dc.description1538
dc.descriptionAtiyah, M.F., Complex analytic connections in fibre bundles (1957) Trans. Amer. Math. Soc., 85, pp. 181-207
dc.descriptionChern, S.S., Eine Invariantentheorie der Dreigewebe aus r-dimensionalen Mannigfaltigkeiten im R2r (1936) Abhandl. Math. Semin. Univ. Hamburg
dc.descriptionCoandǎ, I., Tikhomirov, A.S., Trautmann, G., Irreducibility and smoothness of the moduli space of mathematical 5-instantons over P3 (2003) Internat. J. Math., 14, pp. 1-45
dc.descriptionDonaldson, S., Instantons and geometric invariant theory (1984) Comm. Math. Phys., 93, pp. 453-460
dc.descriptionFeix, B., (1999), p. 78. , Hyperkähler metrics on cotangent bundles, Ph.D. thesis, OxfordFeix, B., Hyperkähler metrics on cotangent bundles (2001) J. Reine Angew. Math., 532, pp. 33-46
dc.descriptionFrenkel, I.B., Jardim, M., Complex ADHM equations, and sheaves on P3 (2008) J. Algebra, 319, pp. 2913-2937
dc.descriptionGrauert, H., Mülich, G., Vectorbundel von Rang 2 uber dem n-dimensionalen komplex projective Raum (1975) Manuscripta Math., 16, pp. 75-100
dc.descriptionHauzer, M., Langer, A., Moduli spaces of framed perverse instantons on P3 (2010) Glasg. Math. J., 53, pp. 51-96
dc.descriptionJardim, M., Instanton sheaves on complex projective spaces (2006) Collect. Math., 57, pp. 69-97
dc.descriptionJardim, M., Atiyah-Drinfeld-Hitchin-Manin construction of framed instanton sheaves (2008) C. R. Acad. Sci. Paris Ser. I, 346, pp. 427-430
dc.descriptionKaledin, D., Hyperkähler structures on total spaces of holomorphic cotangent bundles (2001) Hyperkähler Manifolds, , International Press, Boston, D. Kaledin, M. Verbitsky (Eds.)
dc.descriptionKaledin, D., Verbitsky, M., Non-Hermitian Yang-Mills connections (1998) Selecta Math. (N.S.), 4, pp. 279-320
dc.descriptionMaruyama, M., The Theorem of Grauert-Mülich-Spindler (1981) Math. Ann., 255, pp. 317-333
dc.descriptionNagy, P.T., Invariant tensorfields and the canonical connection of a 3-web (1988) Aequationes Math., 35, pp. 31-44
dc.descriptionNakajima, H., (1999) Lectures on Hilbert Schemes of Points on Surfaces, , American Mathematical Society, Providence
dc.descriptionNitta, T., Vector bundles over quaternionic Kähler manifolds (1988) Tohoku Math. J., 40, pp. 425-440
dc.descriptionSalamon, S., Quaternionic Kähler manifolds (1982) Invent. Math., 67, pp. 143-171
dc.descriptionTikhomirov, A.A., The main component of the moduli space of mathematical instanton vector bundles on P3 (1997) J. Math. Sci., 86, pp. 3004-3087
dc.descriptionVerbitsky, M., Hyperholomorphic bundles over a hyperkähler manifold (1996) J. Algebraic Geom., 5, pp. 633-669
dc.descriptionVerbitsky, M., Hypercomplex varieties (1999) Comm. Anal. Geom., 7, pp. 355-396
dc.languageen
dc.publisher
dc.relationAdvances in Mathematics
dc.rightsfechado
dc.sourceScopus
dc.titleModuli Spaces Of Framed Instanton Bundles On C{double-strcuk}p{double-strcuk}3 And Twistor Sections Of Moduli Spaces Of Instantons On C{double-strcuk}2
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución