dc.creator | Papa J.P. | |
dc.creator | Rocha A. | |
dc.date | 2011 | |
dc.date | 2015-06-30T20:18:16Z | |
dc.date | 2015-11-26T14:47:43Z | |
dc.date | 2015-06-30T20:18:16Z | |
dc.date | 2015-11-26T14:47:43Z | |
dc.date.accessioned | 2018-03-28T21:58:18Z | |
dc.date.available | 2018-03-28T21:58:18Z | |
dc.identifier | 9781457713033 | |
dc.identifier | Proceedings - International Conference On Image Processing, Icip. , v. , n. , p. 3525 - 3528, 2011. | |
dc.identifier | 15224880 | |
dc.identifier | 10.1109/ICIP.2011.6116475 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84856297857&partnerID=40&md5=5f2b949e1b6c3135ec2eabbd2aa2f13d | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/107507 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/107507 | |
dc.identifier | 2-s2.0-84856297857 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1253393 | |
dc.description | Different from the first attempts to solve the image categorization problem (often based on global features), recently, several researchers have been tackling this research branch through a new vantage point - using features around locally invariant interest points and visual dictionaries. Although several advances have been done in the visual dictionaries literature in the past few years, a problem we still need to cope with is calculation of the number of representative words in the dictionary. Therefore, in this paper we introduce a new solution for automatically finding the number of visual words in an N-Way image categorization problem by means of supervised pattern classification based on optimum-path forest. © 2011 IEEE. | |
dc.description | | |
dc.description | | |
dc.description | 3525 | |
dc.description | 3528 | |
dc.description | IEEE,IEEE Signal Processing Society | |
dc.description | Lowe, D., Distinctive image features from scale-invariant keypoints (2004) IJCV, 60 (2), pp. 91-110. , February | |
dc.description | Mikolajczyk, K., Schmid, C., Scale & affine invariant interest point detectors (2004) IJCV, 60 (1), pp. 63-86 | |
dc.description | Demirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S., Object recognition as many-to-many feature matching (2006) International Journal of Computer Vision, 69 (2), pp. 203-222. , DOI 10.1007/s11263-006-6993-y | |
dc.description | Stoettinger, J., Hanbury, A., Sebe, N., Gevers, T., Do colour interest points improve image retrieval (2007) ICIP, pp. 169-172 | |
dc.description | Valle, E., (2008) Local-descriptor Matching for Image Identification Systems, , Phd thesis, Universit de Cergy-Pontoise, Cergy-Pontoise, France | |
dc.description | Sivic, J., Zisserman, A., Video google: A text retrieval approach to object matching in videos (2003) IEEE ICCV, pp. 1470-1477 | |
dc.description | Papa, J.P., Falcão, A.X., Suzuki, C.T.N., Supervised pattern classification based on optimum-path forest (2009) IJIST, 19 (2), pp. 120-131 | |
dc.description | Winn, J., Criminisi, A., Minka, T., Object categorization by learned universal visual dictionary (2005) IEEE ICCV, pp. 1800-1807 | |
dc.description | Ulusoy, I., Bishop, C.M., Generative versus discriminative methods for object recognition (2005) IEEE CVPR, 2 | |
dc.description | Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C., Visual categorization with bags of keypoints Workshop on Statistical Learning in Computer Vision, 2004 | |
dc.description | Bay, H., Tuytelaars, T., Van Gool, L., SURF: Speeded up robust features European Conference on Computer Vision, 2006, pp. 1-14 | |
dc.description | Bishop, C.M., (2006) Pattern Recognition and Machine Learning, , Springer, 1 edition | |
dc.language | en | |
dc.publisher | | |
dc.relation | Proceedings - International Conference on Image Processing, ICIP | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Image Categorization Through Optimum Path Forest And Visual Words | |
dc.type | Actas de congresos | |