dc.creatorPapa J.P.
dc.creatorRocha A.
dc.date2011
dc.date2015-06-30T20:18:16Z
dc.date2015-11-26T14:47:43Z
dc.date2015-06-30T20:18:16Z
dc.date2015-11-26T14:47:43Z
dc.date.accessioned2018-03-28T21:58:18Z
dc.date.available2018-03-28T21:58:18Z
dc.identifier9781457713033
dc.identifierProceedings - International Conference On Image Processing, Icip. , v. , n. , p. 3525 - 3528, 2011.
dc.identifier15224880
dc.identifier10.1109/ICIP.2011.6116475
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84856297857&partnerID=40&md5=5f2b949e1b6c3135ec2eabbd2aa2f13d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107507
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107507
dc.identifier2-s2.0-84856297857
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253393
dc.descriptionDifferent from the first attempts to solve the image categorization problem (often based on global features), recently, several researchers have been tackling this research branch through a new vantage point - using features around locally invariant interest points and visual dictionaries. Although several advances have been done in the visual dictionaries literature in the past few years, a problem we still need to cope with is calculation of the number of representative words in the dictionary. Therefore, in this paper we introduce a new solution for automatically finding the number of visual words in an N-Way image categorization problem by means of supervised pattern classification based on optimum-path forest. © 2011 IEEE.
dc.description
dc.description
dc.description3525
dc.description3528
dc.description IEEE,IEEE Signal Processing Society
dc.descriptionLowe, D., Distinctive image features from scale-invariant keypoints (2004) IJCV, 60 (2), pp. 91-110. , February
dc.descriptionMikolajczyk, K., Schmid, C., Scale & affine invariant interest point detectors (2004) IJCV, 60 (1), pp. 63-86
dc.descriptionDemirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S., Object recognition as many-to-many feature matching (2006) International Journal of Computer Vision, 69 (2), pp. 203-222. , DOI 10.1007/s11263-006-6993-y
dc.descriptionStoettinger, J., Hanbury, A., Sebe, N., Gevers, T., Do colour interest points improve image retrieval (2007) ICIP, pp. 169-172
dc.descriptionValle, E., (2008) Local-descriptor Matching for Image Identification Systems, , Phd thesis, Universit de Cergy-Pontoise, Cergy-Pontoise, France
dc.descriptionSivic, J., Zisserman, A., Video google: A text retrieval approach to object matching in videos (2003) IEEE ICCV, pp. 1470-1477
dc.descriptionPapa, J.P., Falcão, A.X., Suzuki, C.T.N., Supervised pattern classification based on optimum-path forest (2009) IJIST, 19 (2), pp. 120-131
dc.descriptionWinn, J., Criminisi, A., Minka, T., Object categorization by learned universal visual dictionary (2005) IEEE ICCV, pp. 1800-1807
dc.descriptionUlusoy, I., Bishop, C.M., Generative versus discriminative methods for object recognition (2005) IEEE CVPR, 2
dc.descriptionCsurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C., Visual categorization with bags of keypoints Workshop on Statistical Learning in Computer Vision, 2004
dc.descriptionBay, H., Tuytelaars, T., Van Gool, L., SURF: Speeded up robust features European Conference on Computer Vision, 2006, pp. 1-14
dc.descriptionBishop, C.M., (2006) Pattern Recognition and Machine Learning, , Springer, 1 edition
dc.languageen
dc.publisher
dc.relationProceedings - International Conference on Image Processing, ICIP
dc.rightsfechado
dc.sourceScopus
dc.titleImage Categorization Through Optimum Path Forest And Visual Words
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución