dc.creatorVecina J.F.
dc.creatorOliveira A.G.
dc.creatorAraujo T.G.
dc.creatorBaggio S.R.
dc.creatorTorello C.O.
dc.creatorSaad M.J.A.
dc.creatorQueiroz M.L.D.S.
dc.date2014
dc.date2015-06-25T17:56:47Z
dc.date2015-11-26T14:47:17Z
dc.date2015-06-25T17:56:47Z
dc.date2015-11-26T14:47:17Z
dc.date.accessioned2018-03-28T21:57:34Z
dc.date.available2018-03-28T21:57:34Z
dc.identifier
dc.identifierLife Sciences. , v. 95, n. 1, p. 45 - 52, 2014.
dc.identifier243205
dc.identifier10.1016/j.lfs.2013.11.020
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84892374361&partnerID=40&md5=4b4989054e153931150600f1bfe0abff
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87119
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87119
dc.identifier2-s2.0-84892374361
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253205
dc.descriptionAims The search for natural agents that minimize obesity-associated disorders is receiving special attention. In this regard, the present study aimed to evaluate the prophylactic effect of Chlorella vulgaris (CV) on body weight, lipid profile, blood glucose and insulin signaling in liver, skeletal muscle and adipose tissue of diet-induced obese mice. Main methods Balb/C mice were fed either with standard rodent chow diet or high-fat diet (HFD) and received concomitant treatment with CV for 12 consecutive weeks. Triglyceride, free fatty acid, total cholesterol and fractions of cholesterol were measured using commercial assay. Insulin and leptin levels were determined by enzyme-linked immunosorbent assay (ELISA). Insulin and glucose tolerance tests were performed. The expression and phosphorylation of IRβ, IRS-1 and Akt were determined by Western blot analyses. Key findings Herein we demonstrate for the first time in the literature that prevention by CV of high-fat diet-induced insulin resistance in obese mice, as shown by increased glucose and insulin tolerance, is in part due to the improvement in the insulin signaling pathway at its main target tissues, by increasing the phosphorylation levels of proteins such as IR, IRS-1 and Akt. In parallel, the lower phosphorylation levels of IRS-1ser307 were observed in obese mice. We also found that CV administration prevents high-fat diet-induced dyslipidemia by reducing triglyceride, cholesterol and free fatty acid levels. Significance We propose that the modulatory effect of CV treatment preventing the deleterious effects induced by high-fat diet is a good indicator for its use as a prophylactic-therapeutic agent against obesity-related complications. © 2013 Elsevier Inc. All rights reserved.
dc.description95
dc.description1
dc.description45
dc.description52
dc.descriptionAguirre, V., Werner, E.D., Giraud, J., Lee, Y.H., Shoelson, S.E., White, M.F., Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action (2002) J Biol Chem, 277, pp. 1531-1537
dc.descriptionAraujo, T.G., Oliveira, A.G., Carvalho, B.M., Guadagnini, D., Protzek, A.O., Carvalheira, J.B., Hepatocyte growth factor plays a key role in insulin resistance- associated compensatory mechanisms (2012) Endocrinology, 153, pp. 5760-5769
dc.descriptionBoura-Halfon, S., Zick, Y., Phosphorylation of IRS proteins, insulin action, and insulin resistance (2009) Am J Physiol Endocrinol Metab, 296, pp. 581-E591
dc.descriptionCaricilli, A.M., Picardi, P.K., De Abreu, L.L., Ueno, M., Prada, P.O., Ropelle, E.R., Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice (2011) PLoS Biol, 9, p. 1001212
dc.descriptionCaro, J.F., Kolaczynski, J.W., Nyce, M.R., Ohannesian, J.P., Opentanova, I., Goldman, W.G., Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance (1996) Lancet, 348, pp. 159-161
dc.descriptionChang, C.L., Lin, Y., Bartolome, A.P., Chen, Y.C., Chiu, S.C., Yang, W.C., Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds (2013) Evid Based Complement Alternat Med, 2013, p. 378657
dc.descriptionCherng, J.Y., Shih, M.F., Improving glycogenesis in streptozocin (STZ) diabetic mice after administration of green algae Chlorella (2006) Life Sci, 78, pp. 1181-1186
dc.descriptionChou, Y.C., Prakash, E., Huang, C.F., Lien, T.W., Chen, X., Su, I.J., Bioassay-guided purification and identification of PPARalpha/gamma agonists from Chlorella sorokiniana (2008) Phytother Res, 22, pp. 605-613
dc.descriptionChou, N.T., Cheng, C.F., Wu, H.C., Lai, C.P., Lin, L.T., Pan, I.H., Chlorella sorokiniana-induced activation and maturation of human monocyte-derived dendritic cells through NF-kappaB and PI3K/MAPK pathways (2012) Evid Based Complement Alternat Med, 2012, p. 735396
dc.descriptionChovanèíková, M., Simek, V., Effects of high-fat and Chlorella vulgaris feeding on changes in lipid metabolism in mice (2001) Biol Bratislava, 56, pp. 661-666
dc.descriptionConsidine, R.V., Sinha, M.K., Heiman, M.L., Aidas Kriauciunas, A., Stephens, T.W., Nyce, M.R., Serum immunoreactive-leptin concentrations in normal-weight and obese humans (1996) N Engl J Med, 334, pp. 292-295
dc.descriptionDantas, D.C.M., Queiroz, M.L.S., Effects of Chlorella vulgaris on bone marrow progenitor cells of mice infected with Listeria monocytogenes (1999) Int J Immunopharmacol, 21, pp. 499-508
dc.descriptionDantas, D.C.M., Kaneno, R., Queiroz, M.L.S., The effects of Chlorella vulgaris in the protection of mice infected with Listeria monocytogenes. Role of natural killer cells (1999) Immunopharmacol Immunotoxicol, 21 (3), pp. 609-619
dc.descriptionDonath, M.Y., Shoelson, S.E., Type 2 diabetes as an inflammatory disease (2011) Nat Rev Immunol, 11, pp. 98-107
dc.descriptionGonzalez-Periz, A., Horrillo, R., Ferre, N., Gronert, K., Dong, B., Moran-Salvador, E., Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: A role for resolvins and protectins (2009) FASEB J, 23, pp. 1946-1957
dc.descriptionGregor, M.F., Hotamisligil, G.S., Inflammatory mechanisms in obesity (2011) Annu Rev Immunol, 29, pp. 415-445
dc.descriptionHasegawa, T., Noda, K., Kumamoto, S., Ando, Y., Yamada, A., Yoshikai, Y., Chlorella vulgaris culture supernatant (CVS) reduces psychological stress-induced apoptosis in thymocytes of mice (2000) Int J Immunopharmacol, 22, pp. 877-885
dc.descriptionHidaka, S., Okamoto, Y., Arita, M., A hot water extract of Chlorella pyrenoidosa reduces body weight and serum lipids in ovariectomized rats (2004) Phytother Res, 18, pp. 164-168
dc.descriptionHirosumi, J., Tuncman, G., Chang, L., Gorgun, C.Z., Uysal, K.T., Maeda, K., A central role for JNK in obesity and insulin resistance (2002) Nature, 420, pp. 333-336
dc.descriptionHotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F., Spiegelman, B.M., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance (1996) Science, 271, pp. 665-668
dc.descriptionHoward, B.V., Ruotolo, G., Robbins, D.C., Obesity and dyslipidemia (2003) Endocrinol Metab Clin N Am, 32, pp. 855-867
dc.descriptionJeong, H., Kwon, H.J., Kim, M.K., Hypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto-Kakizaki and normal Wistar rats (2009) Nutr Res Pract, 3, pp. 23-30
dc.descriptionJong-Yuh, C., Mei-Fen, S., Potential hypoglycemic effects of Chlorella in streptozotocin-induced diabetic mice (2005) Life Sci, 77, pp. 980-990
dc.descriptionJusto, G.Z., Silva, M.R., Queiroz, M.L.S., Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal Ehrlich ascites tumor transplantation in mice (2001) Immunopharmacol Immunotoxicol, 23 (1), pp. 119-132
dc.descriptionKay, R.A., Microalgae as food and supplement (1991) Crit Rev Food Sci Nutr, 30, pp. 555-573
dc.descriptionKonishi, F., Tanaka, K., Himeno, K., Taniguchi, K., Nomoto, K., Antitumor effect induced by a hot water extract of Chlorella vulgaris (CE): Resistance to meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes (1985) Cancer Immunol Immunother CII, 19, pp. 73-78
dc.descriptionLee, H.S., Kim, M.K., Effect of Chlorella vulgaris on glucose metabolism in Wistar rats fed high fat diet (2009) J Med Food, 12, pp. 1029-1037
dc.descriptionLee, H.S., Park, H.J., Kim, M.K., Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high fat diet (2008) Nutr Res Pract, 2, pp. 204-210
dc.descriptionLee, S.H., Min, K.H., Han, J.S., Lee, D.H., Park, D.B., Jung, W.K., Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus (2012) Food Chem Toxicol, 50, pp. 575-582
dc.descriptionMatthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., Turner, R.C., Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man (1985) Diabetologia, 28, pp. 412-419
dc.descriptionMehran, A.E., Templeman, N.M., Brigidi, G.S., Lim, G.E., Chu, K.Y., Hu, X., Hyperinsulinemia drives diet-induced obesity independently of brain insulin production (2012) Cell Metab, 16, pp. 723-737
dc.descriptionMizoguchi, T., Takehara, I., Masuzawa, T., Saito, T., Naoki, Y., Nutrigenomic studies of effects of Chlorella on subjects with high-risk factors for lifestyle-related disease (2008) J Med Food, 11, pp. 395-404
dc.descriptionNarayan, K.M., Gregg, E.W., Fagot-Campagna, A., Engelgau, M.M., Vinicor, F., Diabetes - A common, growing, serious, costly, and potentially preventable public health problem (2000) Diabetes Res Clin Pract, 50 (SUPPL. 2), pp. 77-S84
dc.descriptionNoda, K., Ohno, N., Tanaka, K., Okuda, M., Yadomae, T., Nomoto, K., A new type of biological response modifier from Chlorella vulgaris which needs protein moiety to show an antitumour activity (1998) Phytother Res, 12, pp. 309-319
dc.descriptionNoguchi, N., Konishi, F., Kumamoto, S., Maruyama, I., Ando, Y., Yanagita, T., Beneficial effects of Chlorella on glucose and lipid metabolism in obese rodents on a high-fat diet (2013) Obes Res Clin Pract, 7 (2), pp. 95-105
dc.descriptionOkudo, M., Hasegawa, T., Sonoda, M., Okabe, T., Tanaka, M., The effects of Chlorella on the level of cholesterol in serum and liver (1975) Jap J Nutr, 33, pp. 3-8
dc.descriptionOliveira, A.G., Carvalho, B.M., Tobar, N., Ropelle, E.R., Pauli, J.R., Bagarolli, R.A., Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats (2011) Diabetes, 60, pp. 784-796
dc.descriptionPanahi, Y., Tavana, S., Sahebkar, A., Masoudi, H., Madanchi, N., Impact of adjunctive therapy with Chlorella vulgaris extract on antioxidant status, pulmonary function, and clinical symptoms of patients with obstructive pulmonary diseases (2012) Sci Pharm, 80, pp. 719-730
dc.descriptionPessin, J.E., Saltiel, A.R., Signaling pathways in insulin action: Molecular targets of insulin resistance (2000) J Clin Invest, 106, pp. 165-169
dc.descriptionPiroli, G.G., Grillo, C.A., Reznikov, L.R., Adams, S., McEwen, B.S., Charron, M.J., Reagan, L.P., Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus (2007) Neuroendocrinology, 85 (2), pp. 71-80
dc.descriptionQueiroz, M.L.S., Bincoletto, C., Valadares, M.C., Dantas, D.C.M., Santos, L.M.B., Effects of Chlorella vulgaris extract on citocynes production in Listeria monocytogenes infected mice (2002) Immunopharmacol Immunotoxicol, 24, pp. 483-496
dc.descriptionQueiroz, M.L., Rodrigues, A.P., Bincoletto, C., Figueiredo, C.A., Malacrida, S., Protective effects of Chlorella vulgaris in lead-exposed mice infected with Listeria monocytogenes (2003) Int Immunopharmacol, 3, pp. 889-900
dc.descriptionQueiroz, M.L.S., Torello, C.O., Perhs, S.M., Rocha, M.C., Bechara, E.J., Morgano, M.A., Chlorella vulgaris up-modulation of myelossupression induced by lead: The role of stromal cells (2008) Food Chem Toxicol, 46, pp. 3147-3154
dc.descriptionQueiroz, M.L.S., Rocha, M.C., Torello, C.O., Souza-Queiroz, J., Bincoletto, C., Morgano, M.A., Chlorella vulgaris restores bone marrow cellularity and cytokine production in lead-exposed mice (2011) Food Chem Toxicol, 49, pp. 2934-2941
dc.descriptionRamos, A.L., Torello, C.O., Queiroz, M.L., Chlorella vulgaris modulates immunomyelopoietic activity and enhances the resistance of tumor-bearing mice (2010) Nutr Cancer, 62, pp. 1170-1180
dc.descriptionRamos, A.L., Torello, C.O., Rocha, M.C., Oliveira, S.C., Souza, I., Antunes, E., Chlorella vulgaris modulates macrophages activities in Ehrlich ascites tumor-bearing mice (2013) Nutr Cancer., , [submitted for publication]
dc.descriptionRodriguez-Garcia, I., Guil-Guerrero, J.L., Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods (2008) Food Chem, 108, pp. 1023-1026
dc.descriptionRodriguez-Lopez, M., Lopez-Quijada, C., Plasma-glucose and plasma-insulin in normal and alloxanized rats treated with Chlorella (1971) Life Sci Pt 2 Biochem Gen Mol Biol, 10, pp. 57-60
dc.descriptionSaad, S.M., Yusof, Y.A.M., Ngah, W.Z.W., Comparison between locally produced Chlorella vulgaris and Chlorella vulgaris from Japan on proliferation and apoptosis of liver cancer cell line, HepG2 (2006) Malays J Biochem Mol Biol, 13, pp. 32-36
dc.descriptionSaltiel, A.R., Kahn, C.R., Insulin signalling and the regulation of glucose and lipid metabolism (2001) Nature, 414, pp. 799-806
dc.descriptionSaltiel, A.R., Pessin, J.E., Insulin signaling pathways in time and space (2002) Trends Cell Biol, 12, pp. 65-71
dc.descriptionSano, T., Kumamoto, Y., Kamiya, N., Okuda, M., Tanaka, Y., Effect of lipophilic extract of Chlorella vulgaris on alimentary hyperlipidemia in cholesterol-fed rats (1988) Artery, 15, pp. 217-224
dc.descriptionSeidell, J.C., Obesity and weight control: The evidence (2000) Proc Nutr Soc, 59, pp. 419-420
dc.descriptionSenthilkumar, T., Sangeetha, N., Ashokkumar, N., Antihyperglycemic, antihyperlipidemic, and renoprotective effects of Chlorella pyrenoidosa in diabetic rats exposed to cadmium (2012) Toxicol Mech Methods, 22, pp. 617-624
dc.descriptionShibata, S., Oda, K., Onodera-Masuoka, N., Matsubara, S., Kikuchi-Hayakawa, H., Ishikawa, F., Hypocholesterolemic effect of indigestible fraction of Chlorella regularis in cholesterol-fed rats (2001) J Nutr Sci Vitaminol (Tokyo), 47, pp. 373-377
dc.descriptionShoelson, S.E., Lee, J., Goldfine, A.B., Inflammation and insulin resistance (2006) J Clin Invest, 116, pp. 1793-1801
dc.descriptionSimopoulos, A.P., The importance of the ratio of omega-6/omega-3 essential fatty acids (2002) Biomedecine Pharmacotherapie, 56, pp. 365-379
dc.descriptionSingh, A., Sharma, L., Mallick, N., Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella (2004) Ecotoxicol Environ Saf, 59, pp. 223-227
dc.descriptionSolinas, G., Karin, M., JNK1 and IKKbeta: Molecular links between obesity and metabolic dysfunction (2010) FASEB J, 24, pp. 2596-2611
dc.descriptionSouza-Queiroz, J., Malacrida, S.A., Justo, G.Z., Queiroz, M.L.S., Myelopoietic response in mice exposed to acute/cold restraint stress: Modulation by Chlorella vulgaris prophylactic treatment (2004) Immunopharmacol Immunotoxicol, 26, pp. 455-467
dc.descriptionSouza-Queiroz, J., Torello, C.O., Palermo-Neto, J., Valadares, M.C., Queiroz, M.L., Hematopoietic response of rats exposed to the impact of an acute psychophysiological stressor on responsiveness to an in vivo challenge with Listeria monocytogenes: Modulation by Chlorella vulgaris prophylactic treatment (2008) Brain Behav Immun, 22, pp. 1056-1065
dc.descriptionSouza-Queiroz, J., Rocha, M.C., Barbosa, C.M.V., Bincoletto, C., Queiroz, M.L.S., Paredes-Gamero, E.J., Chlorella vulgaris treatment ameliorates the suppressive effects of single and repeated stressors on hematopoiesis (2013) Brain Behav Immun, 29, pp. 39-50
dc.descriptionSouza-Queiroz, J., Marin-Blasco, I., Gómez-Román, A., Belda, X., Rocha, M.C., Carrasco, J., Chlorella vulgaris reduces the impact of stress on hypothalamic- pituitary-adrenal axis and brain c-fos expression (2013) Brain Behav Immun, , [Submitted for publication]
dc.descriptionStumvoll, M., Goldstein, B.J., Van Haeften, T.W., Type 2 diabetes: Principles of pathogenesis and therapy (2005) Lancet, 365, pp. 1333-1346
dc.descriptionTanaka, K., Koga, T., Konishi, F., Nakamura, M., Mitsuyama, M., Himeno, K., Augmentation of host defense by a unicellular green alga, Chlorella vulgaris, to Escherichia coli infection (1986) Infect Immun, 53, pp. 267-271
dc.descriptionTanaka, K., Yamada, A., Noda, K., Hasegawa, T., Okuda, M., Shoyama, Y., A novel glycoprotein obtained from Chlorella vulgaris strain CK22 shows antimetastatic immunopotentiation (1998) Cancer Immunol Immunother, 45, pp. 313-320
dc.descriptionVijayavel, K., Anbuselvam, C., Balasubramanian, M.P., Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats (2007) Mol Cell Biochem, 303, pp. 39-44
dc.descriptionVisscher, T.L., Seidell, J.C., The public health impact of obesity (2001) Annu Rev Public Health, 22, pp. 355-375
dc.descriptionWang, J., Obici, S., Morgan, K., Barzilai, N., Feng, Z., Rossetti, L., Overfeeding rapidly induces leptin and insulin resistance (2001) Diabetes, 50 (12), pp. 2786-2791
dc.descriptionObesity and overweight (2012) Fact Sheet 311, , Who
dc.languageen
dc.publisher
dc.relationLife Sciences
dc.rightsfechado
dc.sourceScopus
dc.titleChlorella Modulates Insulin Signaling Pathway And Prevents High-fat Diet-induced Insulin Resistance In Mice
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución