dc.creatorArruda P.
dc.creatorKemper E.L.
dc.creatorPapes F.
dc.creatorLeite A.
dc.date2000
dc.date2015-06-30T19:50:35Z
dc.date2015-11-26T14:47:09Z
dc.date2015-06-30T19:50:35Z
dc.date2015-11-26T14:47:09Z
dc.date.accessioned2018-03-28T21:57:21Z
dc.date.available2018-03-28T21:57:21Z
dc.identifier
dc.identifierTrends In Plant Science. , v. 5, n. 8, p. 324 - 330, 2000.
dc.identifier13601385
dc.identifier10.1016/S1360-1385(00)01688-5
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0034254531&partnerID=40&md5=a40b5f3e2df4e45e126797cdab600606
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107229
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107229
dc.identifier2-s2.0-0034254531
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253152
dc.descriptionLysine is an essential amino acid for mammals but its concentration in cereals, one of our main food sources, is low. Research over the past 40 years has unraveled many biochemical and molecular details of the aspartic acid pathway, which is the main route of lysine biosynthesis in plants. However, genetic manipulation of this pathway has not been successful at producing high-lysine seeds. This is because lysine, instead of being accumulated, is degraded via the saccharopine pathway. Recent work has increased our knowledge of this pathway, including both the enzymes involved and their regulation.
dc.description5
dc.description8
dc.description324
dc.description330
dc.descriptionAzevedo, R.A., The biosynthesis and metabolism of the aspartate derived amino acids in higher plants (1999) Phytochemistry, 46, pp. 395-419
dc.descriptionGalili, G., Regulation of lysine and threonine synthesis (1995) Plant Cell, 7, pp. 899-906
dc.descriptionShaul, O., Galili, G., Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase (1993) Plant Mol. Biol., 23, pp. 759-768
dc.descriptionFalco, S.C., Transgenic canola and soybean seeds with increased lysine (1995) Biotechnology, 13, pp. 577-582
dc.descriptionSodek, L., Biosynthesis of lysine and other amino acids in the developing maize endosperm (1976) Phytochemistry, 15, pp. 1903-1906
dc.descriptionArruda, P., Silva, W., Amino acid composition of vascular sap of maize ear peduncle (1979) Phytochemistry, 18, pp. 409-410
dc.descriptionShewry, P.R., Casey, R., Seed proteins (1999) Seed Proteins, pp. 1-10. , Casey, R. and Shewry, P.R., eds, Kluwer Academic Publishers
dc.descriptionArruda, P., Lysine-ketoglutaric acid reductase activity in developing maize endosperm (1982) Plant Physiol., 69, pp. 988-989
dc.descriptionGaziola, S.A., The enzymology of lysine catabolism in rice seeds - isolation, characterization, and regulatory properties of a lysine 2-oxoglutarate reductase/saccharopine dehydrogenase bifunctional polypeptide (1997) Eur. J. Biochem., 247, pp. 364-371
dc.descriptionSodek, L., Wilson, C.M., Incorporation of leucine-C14 and lysine-C14 into protein in the developing endosperm of normal and opaque2 corn (1970) Arch. Biochem. Biophys., 140, pp. 29-38
dc.descriptionBrandt, A.B., In vivo incorporation of lysine-C14 into the endosperm of wild type and high lysine barley (1975) FEBS Lett., 52, pp. 288-291
dc.descriptionGonçalves-Butruille, M., Purification and characterization of the bifunctional enzyme lysine-ketoglutarate reductase-saccharopine dehydrogenase from maize (1996) Plant Physiol., 110, pp. 765-771
dc.descriptionShewry, P.R., Tatham, A., The characteristcs, structures and evolutionary relationships of prolamins (1999) Seed Proteins, pp. 11-33. , Casey, R. and Shewry, P.R., eds, Kluwer Academic Publishers
dc.descriptionArruda, P., Silva, W.J., Lysine-ketoglutaric acid reductase activity in maize: Its possible role on lysine metabolism of developing endosperm (1983) Phytochemistry, 22, pp. 206-208
dc.descriptionTang, G., Regulation of lysine catabolism through lysine-ketoglutaric acid reductase and saccharopine dehydrogenase in Arabidopsis (1997) Plant Cell, 9, pp. 1305-1316
dc.descriptionKarchi, H., Lysine synthesis and catabolism are coordinately regulated during tobacco seed development (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 2577-2581
dc.descriptionMiron, D., In vitro dephosphorylation inhibits the activity of soybean lysine-ketoglutaric acid reductase in a lysine-regulated manner (1997) Plant J., 12, pp. 1453-1458
dc.descriptionKemper, E.L., The role of Opaque2 on the control of lysine degrading activities in developing maize endosperm (1999) Plant Cell, 11, pp. 1981-1994
dc.descriptionSchmidt, R.J., Opaque2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes (1992) Plant Cell, 4, pp. 689-700
dc.descriptionCord Neto, G., The involvement of Opaque2 on β-prolamin gene regulation in maize and Coix suggests a more general role for this transcriptional activator (1995) Plant Mol. Biol., 27, pp. 1015-1029
dc.descriptionBrochetto-Braga, M.R., Partial purification and characterization of lysine-ketoglutarate reductase activity in normal and opaque2 maize endosperms (1992) Plant Physiol., 98, pp. 1139-1147
dc.descriptionGaziola, S.A., Quality protein maize: A biochemical study of enzymes involved in lysine metabolism (1999) J. Agric. Food Chem., 47, pp. 1268-1275
dc.descriptionAzevedo, R.A., Biochemical genetics of the interaction of the lysine plus threonine resistant mutant Ltr*1 with opaque-2 maize mutant (1990) Plant Sci., 70, pp. 81-90
dc.descriptionKarchi, H., The lysine-dependent stimulation of lysine catabolism in tobacco seed requires calcium and protein-phosphorylation (1995) Plant Cell, 7, pp. 1963-1970
dc.descriptionKemper, E.L., Structure and regulation of the bifunctional enzyme lysine-oxoglutarate reductase-saccharopine dehydrogenase in maize (1998) Eur. J. Biochem., 253, pp. 720-729
dc.descriptionEpelbaum, S., Lysine-ketoglutaric acid reductase and saccharopine dehydrogenase from Arabidopsis thaliana: Nucleotide sequence and characterization (1997) Plant Mol. Biol., 35, pp. 735-748
dc.descriptionMazur, B., Gene discovery and product development for grain quality traits (1999) Science, 285, pp. 372-375
dc.descriptionRamos, F., Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae: Evidence for a regulatory route of LYS14 (1988) Eur. J. Biochem., 171, pp. 171-176
dc.descriptionHinnebusch, A.G., Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae (1988) Microbiol. Rev., 52, pp. 248-273
dc.descriptionMüller, M., Knudsen, S., The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box (1993) Plant J., 4, pp. 343-355
dc.descriptionRao, V.V., Developmental changes of L-lysine-ketoglutaric acid reductase in rat brain and liver (1992) Comp. Biochem. Physiol. B Biochem. Mol. Biol., 103, pp. 221-224
dc.descriptionMarkovitz, P.J., Familial hyperlysinemias (1984) J. Biol. Chem., 259, pp. 11643-11646
dc.descriptionDeleu, C., Three new osmotic stress-regulated cDNAs identified by differential display polymerase chain reaction in rapeseed leaf discs (1999) Plant Cell Environ., 22, pp. 979-988
dc.descriptionFeller, A., Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation (1994) Mol. Cell. Biol., 14, pp. 6411-6418
dc.descriptionVerhage, M., Synaptic assembly of the brain in the absence of neurotransmitter secretion (2000) Science, 287, pp. 864-869
dc.descriptionLam, H.M., Glutamic acid receptor genes in plants (1998) Nature, 396, pp. 125-126
dc.descriptionNanjo, T., Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana (1999) Plant J., 18, pp. 185-193
dc.languageen
dc.publisher
dc.relationTrends in Plant Science
dc.rightsfechado
dc.sourceScopus
dc.titleRegulation Of Lysine Catabolism In Higher Plants
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución