dc.creator | Ruffino P.R.C. | |
dc.date | 2000 | |
dc.date | 2015-06-30T19:50:04Z | |
dc.date | 2015-11-26T14:46:59Z | |
dc.date | 2015-06-30T19:50:04Z | |
dc.date | 2015-11-26T14:46:59Z | |
dc.date.accessioned | 2018-03-28T21:57:04Z | |
dc.date.available | 2018-03-28T21:57:04Z | |
dc.identifier | | |
dc.identifier | Random Operators And Stochastic Equations. , v. 8, n. 2, p. 175 - 188, 2000. | |
dc.identifier | 9266364 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-33646213290&partnerID=40&md5=e141d72d079433246db511b1e721e68b | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/107180 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/107180 | |
dc.identifier | 2-s2.0-33646213290 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1253077 | |
dc.description | We prove an ergodic theorem for the rotation number of the composition of a sequence os stationary random homeomorphisms in S 1. In particular, the concept of rotation number of a matrix g ε G1 + (2, ℝ) can be generalized to a product of a sequence of stationary random matrices in Gl +(2, ℝ). In this particular case this result provides a counter-part of the Osseledec's multiplicative ergodic theorem which guarantees the existence of Lyapunov exponents. A random sampling theorem is then proved to show that the concept we propose is consistent by discretization in time with the rotation number of continuous linear processes on ℝ. © 2000 VSP. | |
dc.description | 8 | |
dc.description | 2 | |
dc.description | 175 | |
dc.description | 188 | |
dc.description | Arnold, L., (1998) Random Dynamical Systems, , Springer-Verlag | |
dc.description | Arnold, L., Scheutzow, M., Perfect cocycles through stochastic differential equations (1995) Prob. Th. Rel Fields, 101, pp. 65-88 | |
dc.description | Arnold, L., San Martin, L.A., A multiplicative ergodic theorem for rotation number (1989) J. Dynamics Differential Equations, 1, pp. 95-119 | |
dc.description | Crauel, H., Lyapunov exponents and invariant measures of stochastic systems on manifolds (1986) Lyapunov Exponents. Lecture Notes in Math., p. 1186. , L. Arnold and V. Wihstutz (eds.) Springer | |
dc.description | Furstenberg, H., Kifer, Y., Random matrix products and measures on projective spaces (1983) Israel Journal of Mathematics, 46 | |
dc.description | Nitecki, Z., (1971) Differentiate Dynamics-an Introduction to the Orbit Structure of Dif-feomorphisms, , The MIT Press | |
dc.description | Oppenheim, A.V., Schafer, R.W., (1989) Discrete-time Signal Processing, , Prentice-Hall | |
dc.description | Papoulis, A., (1984) Signal Analysis, , McGraw Hill, International | |
dc.description | Ruelle, D., Ergodic theory of differentiable dynamical systems (1979) I.H.E.S.-Publ. Math., 50 | |
dc.description | Ruffino, P.R.C., Rotation numbers for stochastic dynamical systems (1997) Stochastics and Stochastics Reports, 60, pp. 289-318 | |
dc.description | San Martin, L.A., (1988) A) Rotation Numbers of Differential Equations: A Framework in the Linear Case. Relatorio Tecnico 05/88, , Instituto de Matemdtica, UNICAMP, SP, Brazil | |
dc.description | (1988) Rotation Numbers in Higher Dimensions, , Report 199, Institute for Dynamical Systems, Bremen University, Bremen, Germany | |
dc.language | en | |
dc.publisher | | |
dc.relation | Random Operators and Stochastic Equations | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | A Sampling Theorem For Rotation Numbers Of Linear Processes In R 2 | |
dc.type | Artículos de revistas | |