dc.creatorRuffino P.R.C.
dc.date2000
dc.date2015-06-30T19:50:04Z
dc.date2015-11-26T14:46:59Z
dc.date2015-06-30T19:50:04Z
dc.date2015-11-26T14:46:59Z
dc.date.accessioned2018-03-28T21:57:04Z
dc.date.available2018-03-28T21:57:04Z
dc.identifier
dc.identifierRandom Operators And Stochastic Equations. , v. 8, n. 2, p. 175 - 188, 2000.
dc.identifier9266364
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33646213290&partnerID=40&md5=e141d72d079433246db511b1e721e68b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107180
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107180
dc.identifier2-s2.0-33646213290
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253077
dc.descriptionWe prove an ergodic theorem for the rotation number of the composition of a sequence os stationary random homeomorphisms in S 1. In particular, the concept of rotation number of a matrix g ε G1 + (2, ℝ) can be generalized to a product of a sequence of stationary random matrices in Gl +(2, ℝ). In this particular case this result provides a counter-part of the Osseledec's multiplicative ergodic theorem which guarantees the existence of Lyapunov exponents. A random sampling theorem is then proved to show that the concept we propose is consistent by discretization in time with the rotation number of continuous linear processes on ℝ. © 2000 VSP.
dc.description8
dc.description2
dc.description175
dc.description188
dc.descriptionArnold, L., (1998) Random Dynamical Systems, , Springer-Verlag
dc.descriptionArnold, L., Scheutzow, M., Perfect cocycles through stochastic differential equations (1995) Prob. Th. Rel Fields, 101, pp. 65-88
dc.descriptionArnold, L., San Martin, L.A., A multiplicative ergodic theorem for rotation number (1989) J. Dynamics Differential Equations, 1, pp. 95-119
dc.descriptionCrauel, H., Lyapunov exponents and invariant measures of stochastic systems on manifolds (1986) Lyapunov Exponents. Lecture Notes in Math., p. 1186. , L. Arnold and V. Wihstutz (eds.) Springer
dc.descriptionFurstenberg, H., Kifer, Y., Random matrix products and measures on projective spaces (1983) Israel Journal of Mathematics, 46
dc.descriptionNitecki, Z., (1971) Differentiate Dynamics-an Introduction to the Orbit Structure of Dif-feomorphisms, , The MIT Press
dc.descriptionOppenheim, A.V., Schafer, R.W., (1989) Discrete-time Signal Processing, , Prentice-Hall
dc.descriptionPapoulis, A., (1984) Signal Analysis, , McGraw Hill, International
dc.descriptionRuelle, D., Ergodic theory of differentiable dynamical systems (1979) I.H.E.S.-Publ. Math., 50
dc.descriptionRuffino, P.R.C., Rotation numbers for stochastic dynamical systems (1997) Stochastics and Stochastics Reports, 60, pp. 289-318
dc.descriptionSan Martin, L.A., (1988) A) Rotation Numbers of Differential Equations: A Framework in the Linear Case. Relatorio Tecnico 05/88, , Instituto de Matemdtica, UNICAMP, SP, Brazil
dc.description(1988) Rotation Numbers in Higher Dimensions, , Report 199, Institute for Dynamical Systems, Bremen University, Bremen, Germany
dc.languageen
dc.publisher
dc.relationRandom Operators and Stochastic Equations
dc.rightsfechado
dc.sourceScopus
dc.titleA Sampling Theorem For Rotation Numbers Of Linear Processes In R 2
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución