dc.creatorSilva F.-R.C.
dc.creatorSantana C.C.
dc.date2000
dc.date2015-06-30T19:49:05Z
dc.date2015-11-26T14:46:40Z
dc.date2015-06-30T19:49:05Z
dc.date2015-11-26T14:46:40Z
dc.date.accessioned2018-03-28T21:56:32Z
dc.date.available2018-03-28T21:56:32Z
dc.identifier
dc.identifierApplied Biochemistry And Biotechnology - Part A Enzyme Engineering And Biotechnology. , v. 84-86, n. , p. 1063 - 1078, 2000.
dc.identifier2732289
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0034036305&partnerID=40&md5=d77342b62ee800dfc985ae419456e187
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107070
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107070
dc.identifier2-s2.0-0034036305
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252941
dc.descriptionThe use of adsorption columns packed with ion-exchange resins for recovering, concentrating and purifying proteins is now widespread. The present work consists of a study on the dynamic behavior of adsorption columns that uses two kinds of adsorbents: a cationic and an anionic resin. A frontal analysis of the columns was performed with experimental data obtained from Fructozyme, a mixture of inulinase enzymes. The parameters of a Langmuir type of isotherm and adsorption kinetics were obtained from experimental tests in a batch system. A numerical technique based on orthogonal collocation and a fourth-order Runge-Kutta method was coupled with a nonlinear optimization method to predict the coefficients of the rate equations, which are fundamental for scale-up purposes.
dc.description84-86
dc.description
dc.description1063
dc.description1078
dc.descriptionVandamme, E.J., Derycke, D.G., (1983) Adv. Appl. Microbiol., 29, pp. 139-176
dc.descriptionEttalibi, M., Baratti, J.C., (1990) Agric. Biol. Chem., 54, pp. 61-68
dc.descriptionOnodera, S., Shiomi, N., (1988) Agric. Biol. Chem., 52 (10), pp. 2569-3257
dc.descriptionAzhari, R., Szlak, A.M., Ilan, E., Sideman, S., Lotan, N., (1989) Biotechnol. Appl. Biochem., 11, pp. 105-117
dc.descriptionXiao, R., Tanida, M., Takao, S., (1989) J. Ferment. Bioengineering, 67, pp. 244-248
dc.descriptionLowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., (1951) J. Biol. Chem., 193, pp. 265-275
dc.descriptionMiller, G.L., (1959) Anal. Chem., 31, pp. 426-428
dc.descriptionCarrére, H., (1993), PhD thesis, Institut National Polytechnique de Toulouse, Toulouse, FranceHorstmann, B.J., Chase, H.A., (1989) Chem. Eng. Res. Dev., 67 (3), pp. 243-254
dc.descriptionFinlayson, B.A., (1980) Nonlinear Analysis in Chemical Engineering, 2nd Ed., , McGraw-Hill, New York
dc.descriptionVilladsen, J.E., Michelsen, M.L., (1978) Solution of Differential Equation Models by Polynomial Approximation, 3rd Ed., , Prentice-Hall, NJ
dc.descriptionYao, C., Tien, C., (1992) Chem. Eng. Sci., 47 (2), pp. 465-473
dc.descriptionArnold, F.H., Blanch, H.W., Wilke, C.R., (1985) Chem. Eng. J., 30, pp. B25-B36
dc.descriptionBox, P., (1965) Computer J., 8, pp. 42-52
dc.languageen
dc.publisher
dc.relationApplied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleAdsorption Of Inulinases In Ion-exchange Columns
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución