dc.creator | De Figueiredo C.M.H. | |
dc.creator | De Mello C.P. | |
dc.creator | Ortiz C. | |
dc.date | 2000 | |
dc.date | 2015-06-30T19:49:11Z | |
dc.date | 2015-11-26T14:46:37Z | |
dc.date | 2015-06-30T19:49:11Z | |
dc.date | 2015-11-26T14:46:37Z | |
dc.date.accessioned | 2018-03-28T21:56:28Z | |
dc.date.available | 2018-03-28T21:56:28Z | |
dc.identifier | 3540673067; 9783540673064 | |
dc.identifier | Lecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). , v. 1776 LNCS, n. , p. 145 - 153, 2000. | |
dc.identifier | 3029743 | |
dc.identifier | 10.1007/10719839_16 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84896783019&partnerID=40&md5=a4d61589928cbffddcfd996f21c9439c | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/107081 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/107081 | |
dc.identifier | 2-s2.0-84896783019 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1252921 | |
dc.description | The chromatic index problem - finding the minimum number of colours required for colouring the edges of a graph - is still unsolved for indifference graphs, whose vertices can be linearly ordered so that the vertices contained in the same maximal clique are consecutive in this order. Two adjacent vertices are twins if they belong to the same maximal cliques. A graph is reduced if it contains no pair of twin vertices. A graph is overfull if the total number of edges is greater than the product of the maximum degree by [n/2], where n is the number of vertices. We give a structural characterization for neighbourhood-overfull indifference graphs proving that a reduced indifference graph cannot be neighbourhood-overfull. We show that the chromatic index for all reduced indifference graphs is the maximum degree. © Springer-Verlag Berlin Heidelberg 2000. | |
dc.description | 1776 LNCS | |
dc.description | | |
dc.description | 145 | |
dc.description | 153 | |
dc.description | Cai, L., Ellis, J.A., NP-completeness of edge-colouring some restricted graphs (1991) Discrete Appl. Math., 30, pp. 15-27 | |
dc.description | De Figueiredo, C.M.H., Meidanis, J., De Mello, C.P., A linear-time algorithm for proper interval graph recognition (1995) Inform. Process. Lett., 56, pp. 179-184 | |
dc.description | De Figueiredo, C.M.H., Meidanis, J., De Mello, C.P., Local conditions for edge-coloring (1995) J. Combin. Mathematics and Combin. Computing, 31. , Technical report, DCC 17/95, UNICAMP To appear | |
dc.description | De Figueiredo, C.M.H., Meidanis, J., De Mello, C.P., On edge-colouring indifference graphs (1997) Theoret. Comput. Sci., 181, pp. 91-106 | |
dc.description | De Figueiredo, C.M.H., Meidanis, J., De Mello, C.P., Total-chromatic number and chromatic index of dually chordal graphs (1999) Inform. Process. Lett., 70, pp. 147-152 | |
dc.description | Gutierrez, M., Oubinã, L., Minimum proper interval graphs (1995) Discrete Math., 142, pp. 77-85 | |
dc.description | Hedman, B., Clique graphs of time graphs (1984) J. Combin. Theory Ser. B, 37, pp. 270-278 | |
dc.description | Hilton, A.J.W., Two conjectures on edge-colouring (1989) Discrete Math., 74, pp. 61-64 | |
dc.description | Holyer, I., The NP-completeness of edge-coloring (1981) SIAM J. Comput., 10, pp. 718-720 | |
dc.description | Misra, J., Gries, D., A constructive proof of vizing's theorem (1992) Inform. Process. Lett., 41, pp. 131-133 | |
dc.description | Roberts, F.S., On the compatibility between a graph and a simple order (1971) J. Combin. Theory Ser. B, 11, pp. 28-38 | |
dc.description | Vizing, V.G., On an estimate of the chromatic class of a p-graph (1964) Diskrete Analiz., 3, pp. 25-30. , In Russian | |
dc.language | en | |
dc.publisher | | |
dc.relation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Edge Colouring Reduced Indifference Graphs | |
dc.type | Actas de congresos | |