dc.creator | Do Val J.B.R. | |
dc.creator | Costa E.F. | |
dc.date | 2000 | |
dc.date | 2015-06-30T19:48:50Z | |
dc.date | 2015-11-26T14:46:37Z | |
dc.date | 2015-06-30T19:48:50Z | |
dc.date | 2015-11-26T14:46:37Z | |
dc.date.accessioned | 2018-03-28T21:56:27Z | |
dc.date.available | 2018-03-28T21:56:27Z | |
dc.identifier | | |
dc.identifier | Proceedings Of The Ieee Conference On Decision And Control. , v. 4, n. , p. 3801 - 3806, 2000. | |
dc.identifier | 1912216 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-0034439773&partnerID=40&md5=f6f2e36807c358babe27ccc720c75dfd | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/107044 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/107044 | |
dc.identifier | 2-s2.0-0034439773 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1252919 | |
dc.description | The paper presents a state predictor for linear time-varying systems using Kalman filter with the receding horizon strategy. It can be seen as a standard Kalman filter which takes into account the most recent data, those included in a moving data window of fixed length. The main purpose here is to assure stability for this type of filter. Under standard conditions we can establish a minimum horizon length for which the closed-loop filter with the receding horizon gain is exponentially stable. The approach makes no direct reference to the properties of the underlying Riccati equation, which allow us to address more general problems that can not be coined in terms of Riccati equations. | |
dc.description | 4 | |
dc.description | | |
dc.description | 3801 | |
dc.description | 3806 | |
dc.description | Anderson, B.D.O., Moore, J.B., Detectability and stabilizability of time-varying discrete-time linear systems (1981) SIAM Journal on Control and Optimization, 19 (1), pp. 20-32 | |
dc.description | Bitmead, R.R., Genvers, M., Riccati difference and differential equations: Convergence, monotonicity and stability (1991) The Riccati Equation (Springer Verlag, Berlim), pp. 263-291. , S. Bittani, A. J. Laub and J. C. Willems (eds) | |
dc.description | De Nicolao, G., On the time-varying Riccati difference equation of optimal filtering (1992) SIAM Journal on Control and Optimization, 30 (6), pp. 1251-1269 | |
dc.description | De Nicolao, G., Strada, S., On the stability of receding-horizon LQ control with zero-state terminal contraint (1997) IEEE Transactions on Automatic Control, 42 (2), pp. 257-260 | |
dc.description | Do Val, J.B.R., Başar, T., Receding horizon control of jump linear systems and a macroeconomic policy problem (1999) Journal of Economic Dynamics & Control, 23, pp. 1099-1131 | |
dc.description | Garcia, C.E., Prett, D.M., Morari, M., Model predictive control: Theory and practice - A survey (1989) Automatica, 25 (3), pp. 335-348 | |
dc.description | Hager, W.W., Horowitz, L.L., Convergence and stability properties of the discrete Riccati operator equation and the associated optimal control and filtering problems (1976) SIAM Journal on Control and Optimization, 14 (2), pp. 295-312 | |
dc.description | Keerthi, S.S., Gilbert, E.G., Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations (1988) Journal of Optimization Theory and Applications, 57 (2), pp. 265-293 | |
dc.description | Kwon, W.H., Byun, D.G., Receding horizon tracking control as a predictive control and its stability properties (1989) Int. J. Control, 50 (5), pp. 1807-1824 | |
dc.description | Kwon, W.H., Choi, H., Byun, D.G., Noh, S., Recursive solution of generalized predictive control and its equivalence to receding horizon tracking control (1992) Automatica, 28 (6), pp. 1235-1238 | |
dc.description | Kwon, W.H., Kim, P.S., Park, P., A receding horizon Kalman FIR filter for discrete time-invariant systems (1999) IEEE Transactions on Automatic Control, 44 (9), pp. 1787-1791 | |
dc.description | Lee, J.W., Kwon, W.H., Choi, J., On stability of constrained receding horizon control with finite terminal weighting matrix (1998) Automatica, 34 (12), pp. 1607-1612 | |
dc.description | Ling, K.V., Lim, K.W., Receding horizon recusrive state estimation (1999) IEEE Transactions on Automatic Control, 44 (9), pp. 1750-1753 | |
dc.description | Michalska, H., Mayne, D.Q., Moving horizon observers and observer-based control (1995) IEEE Transactions on Automatic Control, 40 (6), pp. 995-1006 | |
dc.description | Wang, Z., Zhang, J., A Kalman filter algorithm using a moving window with applications (1995) International Journal on Systems Science, 26 (8), pp. 1465-1478 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Proceedings of the IEEE Conference on Decision and Control | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Stability Of Receding Horizon Kalman Filter In State Estimation Of Linear Time-varying Systems | |
dc.type | Actas de congresos | |