dc.creatorGuerra D.L.
dc.creatorPinto A.A.
dc.creatorAiroldi C.
dc.creatorViana R.R.
dc.date2008
dc.date2015-06-30T19:36:55Z
dc.date2015-11-26T14:46:06Z
dc.date2015-06-30T19:36:55Z
dc.date2015-11-26T14:46:06Z
dc.date.accessioned2018-03-28T21:55:36Z
dc.date.available2018-03-28T21:55:36Z
dc.identifier
dc.identifierInorganic Chemistry Communications. , v. 11, n. 5, p. 539 - 544, 2008.
dc.identifier13877003
dc.identifier10.1016/j.inoche.2008.01.027
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-43049153370&partnerID=40&md5=5f62539738d5a335ea11fb6b2cb3ffc6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106846
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106846
dc.identifier2-s2.0-43049153370
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252703
dc.descriptionThe Na-Kanemite sample was used for organofunctionalization process with N-propyldiethylenetrimethoxysilane and 3-aminopropyltriethoxysilane, after expanding the interlayer distance with polar organic solvents such as dimethyl sulfoxide (DMSO). The new organofunctionalized matrix was characterized by carbon nuclear magnetic resonance in the solid state SEM and chemical analysis. The resulted material was submitted to the process of adsorption with uranyl(II) at pH 2.0 and 298 ± 1 K. The Langmuir adsorption isotherm model has been to fit the experimental data with regression non-linear; the net thermal effects obtained from calorimetric titration measurements were adjusted to a modified Langmuir equation. The adsorption process was exothermic (ΔH = -7.14 to -5.98 kJ mol-1) accompanied by an increase in entropy (ΔS = 52.28-62.12 J K-1 mol-1) and Gibbs energy (ΔG = -22.62 to -24.44 kJ mol-1). The favorable values corroborate with the uranyl(II)/basic reactive centres interaction at the solid/liquid interface in the spontaneous process for the new nanomaterials. © 2008.
dc.description11
dc.description5
dc.description539
dc.description544
dc.descriptionAtia, A.A., (2005) Hydrometallurgy, 80, p. 13
dc.descriptionEgawa, H., Nonaka, T., Nakayama, M., (1988) J. Macromol. Sci. Chem., A 25 (10-11), p. 1407
dc.descriptionPekel, N., Şehiner, N., Akkaş, P., Güven, O., (2000) Polym. Bull., 44, p. 593
dc.descriptionZhang, A., Asakura, T., Uchiyama, G., (2003) React. Funct. Polym., 57, p. 67
dc.descriptionŠtamberg, K., Venkatesan, K.A., Rao, P.R.V., (2003) Colloid Surf., 221, p. 149
dc.descriptionBrynda, M., Wesolowski, T.A., Wojcichowski, K., (2004) J. Phys. Chem. A, 108 (23), p. 5091
dc.descriptionHennig, C., Reich, T., Dähn, R., Scheidegger, A.M., (2002) Radiochim. Acta, 90, p. 653
dc.descriptionFroideval, A., Del Nero, M., Barillon, R., Hommet, J., Mignot, G., (2003) J. Colloid Interface Sci., 266, p. 221
dc.descriptionInagaki, S., Koiwai, A., Suzuki, N., Fukushima, Y., Kuroda, K., (1996) Bull. Chem. Soc. Jpn., 69, p. 1449
dc.descriptionGuerra, D.L., Lemos, V.P., Airoldi, C., Angélica, R.S., (2006) Polyhedron, 25, p. 1880
dc.descriptionGuerra, D.L., Airoldi, C., (2008) Inorg. Chem. Commun., 11, p. 20
dc.descriptionAnsari, S.A., Mohapatra, P.K., Manchanda, V.K., (2007) Talanta, 73, p. 878
dc.descriptionHidaka, H., Horie, K., Gauthier-Lafaye, F., (2007) Earth Planet. Sci. Lett., 264, p. 167
dc.descriptionThe Na-Kanemite was prepared by the calcination of 20.0 g of sodium silicate at 700 C for 6 h to obtain δ-Na2 Si2 O5 in 500.0 cm3 of ethanol and stirred by 3 h at 77 K in nitrogen atmosphere. Centrifugation of the dispersion gave us a Na-Kanemite paste. The resulted material was dried in 318 ± 1 K and named Na-K. The two portions of about 10 g of Na-Kanemite were suspended in 25.0 cm3 of DMSO under a nitrogen purge at 298 ± 1 K for 1 h. In each case, 3.0 cm3 of silylating agents was added under flowing nitrogen to the suspension and stirred for 1 h followed by another 72 h at 363 ± 1 K. The solid was filtered, washed with DMSO and again with acetone in a Soxhlet system to remove the inserting solvent from inside the layers, then dried in vacuum to yield the immobilized compounds denoted Na-KNPTM and Na-KAPTThe nuclear magnetic resonance spectrum was recorded with a Bruker AC300/P solid state high-resolution spectrometer, by using cross-polarization and magic angle spinning (CP-MAS). The frequency was 75.5 MHz, with a rotational frequency of 26 MHz and an acquisition time of 0.8 s. The samples for scanning electron microscopy (SEM) images were recorded on a model LEO-ZEISS, 430 Vp at LNLS/Brazil, in the conditions of analysis using secondary images obtained at 20 kV, with a working distance of 11 mm. The surface and porosity analyses were carried out with a volumetric adsorption analyser, AZAP 2010, from Micrometrics, at 77 K. The samples were pre-treated at 373 K for 24 h. After this, the samples were submitted to 298 ± 1 K under vacuum, reaching the residual pressure of 10-4 Pa. For area and pore calculations, the DBET and BJH methods were evaluatedKaradag, D., Koc, Y., Turan, M., Ozturk, M., (2007) J. Hazard. Mater., 144, pp. 432-437
dc.descriptionPrado, A.G.S., Airoldi, C., (2001) C. Anal. Chim. Acta, 432, p. 201
dc.descriptionMachado, R.S.A., Fonseca, M.G., Arakaki, L.N.H., Oliveira, S.F., (2004) Talanta, 63, p. 317
dc.descriptionMachado, M.O., Lazarin, A.M., Airoldi, C., (2006) J. Chem. Thermodyn., 38, p. 130
dc.descriptionRuiz, V.S.O., Airoldi, C., (2004) Thermochim. Acta, 420, p. 73
dc.descriptionMonteiro, O.A.C., Airoldi, C., (2005) J. Colloid Interface Sci., 282, p. 32
dc.descriptionLazarin, A.M., Airoldi, C., (2006) J. Mater. Chem., 18, p. 2226
dc.languageen
dc.publisher
dc.relationInorganic Chemistry Communications
dc.rightsfechado
dc.sourceScopus
dc.titleAdsorption Of Uranyl(ii) Into Modified Lamellar Na-kanemite
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución