dc.creatorPanthee M.
dc.creatorScialom M.
dc.date2008
dc.date2015-06-30T19:35:33Z
dc.date2015-11-26T14:45:57Z
dc.date2015-06-30T19:35:33Z
dc.date2015-11-26T14:45:57Z
dc.date.accessioned2018-03-28T21:55:20Z
dc.date.available2018-03-28T21:55:20Z
dc.identifier
dc.identifierAdvances In Differential Equations. , v. 13, n. 1-2, p. 1 - 26, 2008.
dc.identifier10799389
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84894098217&partnerID=40&md5=f046bc5ba0be0a6b20743ffb176c1654
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106774
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106774
dc.identifier2-s2.0-84894098217
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252643
dc.descriptionWe investigate some well-posedness issues for the initial value problem associated to the system for given data in low order Sobolev spaces Hs(R) × Hs(R). We prove local and global well-posedness results utilizing the sharp smoothing es-timates associated to the linear problem combined with the contraction mapping principle. For data with small Sobolev norm we obtain global solution whenever s ≥ 0 by using global smoothing estimates. In particular, for data satisfying where S is solitary wave solution, we get global solution whenever s > 3/4. To prove this last result, we apply the splitting argument introduced by Bourgain [5] and further simplied by Fonseca, Linares and Ponce [6,7].
dc.description13
dc.description1-2
dc.description1
dc.description26
dc.descriptionAblowitz, M., Kaup, D., Newell, A., Segur, H., Phys. Rev. Lett. (1973) Nonlinear evolution equations of physical significance, 31, pp. 125-127
dc.descriptionAlarcon, E., Angulo, J., Montenegro, J.F., Nonlinear Analysis (1999) Stability and instability of solitary waves for a nonlinear dispersive system, 36, pp. 1015-1035
dc.descriptionAngulo, J., Bona, J., Linares, F., Scialom, M., Nonlinearity (2002) Scaling, stability and singularities for nonlinear dispersive wave equations: the critical case, 15, pp. 759-786
dc.descriptionBona, J.L., Souganidis, P., Strauss, W., Proc. Roy. Soc. London Ser A (1987) Stability and instability of solitary waves of Korteweg-de Vries type equation, 411, pp. 395-412
dc.descriptionBourgain, J., Internat. Math. Res. Notices (1998) Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, 5, pp. 253-283
dc.descriptionFonseca, G., Linares, F., Ponce, G., Communications in PDE (1999) Global well-posedness for the modified Kortewegde Vries equation, 24, pp. 683-705
dc.descriptionFonseca, G., Linares, F., Ponce, G., Proc. Amer. Math. Soc. (2003) Global existence of the critical generalized KdV equation, 131, pp. 1847-1855
dc.descriptionFriedman, A., Inc (1969) Partial Differential Equations, Holt, Rinehart and Winston
dc.descriptionGrillakis, M., Shatah, J., Strauss, W., J. Funct. Anal. (1987) Stability theory of solitary waves in the presence of symmetry I, 74, pp. 160-197
dc.descriptionHakkaev, S., Kirchev, K., (2003) Stability of solitary waves for a nonlinear dispersive system in critical case, , Preprint
dc.descriptionKato, T., Studies in Appl. Math. (1983) On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, 8, pp. 93-128
dc.descriptionKenig, C.E., Ponce, G., Vega, L., J. Amer. Math. Soc. (1991) Well-posedness of the initial value problem for the Korteweg-de Vries equation, 4 (2), pp. 323-347
dc.descriptionKenig, C.E., Ponce, G., Vega, L., Indiana University Math. J. (1991) Oscillatory integrals and regularity of dispersive equations, 40 (1), pp. 33-69
dc.descriptionKenig, C.E., Ponce, G., Vega, L., Comm. Pure Appl. Math. (1993) Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, 46, pp. 527-620
dc.descriptionKenig, C.E., Ruiz, A., Trans. Amer. Math. Soc. (1983) A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, 230, pp. 239-246
dc.descriptionMerle, F., J. Amer. Math. Soc. (2001) Existence of blow-up solutions in the energy space for the critical generalized KdV equation, 14, pp. 555-578
dc.descriptionMontenegro, J.F., Estudo local, global e estabilidade de ondas solitarias (1995) Sistemas de equações não-lineares, , Ph. D. Thesis, IMPA, Rio de Janeiro
dc.descriptionPanthee, M., (2004) Properties of solutions to some nonlinear dispersive models, , Ph. D. Thesis, IMPA, Rio de Janeiro
dc.descriptionStein, E., Weiss, G., (1971) Introduction to Fourier Analysis on Euclidean Spaces, , Prince-ton University Press
dc.descriptionWeinstein, M., Comm. Pure Appl. Math. (1986) Lyapunov stability of ground states of nonlinear dispersive evolution equations, 39, pp. 51-67
dc.languageen
dc.publisher
dc.relationAdvances in Differential Equations
dc.rightsfechado
dc.sourceScopus
dc.titleOn The Cauchy Problem For A Coupled System Of Kdv Equations: Critical Case
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución