dc.creatorCruz F.C.
dc.date2008
dc.date2015-06-30T19:35:38Z
dc.date2015-11-26T14:45:56Z
dc.date2015-06-30T19:35:38Z
dc.date2015-11-26T14:45:56Z
dc.date.accessioned2018-03-28T21:55:20Z
dc.date.available2018-03-28T21:55:20Z
dc.identifier
dc.identifierOptics Express. Optical Society Of American (osa), v. 16, n. 17, p. 13267 - 13275, 2008.
dc.identifier10944087
dc.identifier10.1364/OE.16.013267
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-50049132620&partnerID=40&md5=bb8f4676d4ae6caa8197a2c952126105
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106781
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106781
dc.identifier2-s2.0-50049132620
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252639
dc.descriptionOptical frequency combs generated by multiple four-wave mixing in short and highly nonlinear optical fibers are proposed for use as high precision frequency markers, calibration of astrophysical spectrometers, broadband spectroscopy and metrology. Implementations can involve two optical frequency standards as input lasers, or one standard and a second laser phase-locked to it using a stable microwave reference oscillator. Energy and momentum conservation required by the parametric generation assures phase coherence among comb frequencies, while fibers with short lengths can avoid linewidth broadening and stimulated Brillouin scattering. In contrast to combs from mode-locked lasers or microcavities, the absence of a resonator allows large tuning of the frequency spacing from tens of gigahertz to beyond teraHertz. © 2008 Optical Society of America.
dc.description16
dc.description17
dc.description13267
dc.description13275
dc.descriptionUdem, T., Reichert, J., Holzwarth, R., Hänsen, T.W., Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser (1999) Phys. Rev. Lett, 82, pp. 3568-3571
dc.descriptionUdem, T., Holzwarth, R., Hänsen, T.W., Optical frequency metrology (2002) Nature, 416, pp. 233-237
dc.descriptionOskay, W.H., Diddams, S.A., Donley, E.A., Forcier, T.M., Heavner, T.P., Hollberg, L., Itano, W.M., Bergquist, J.C., Single-Atom Optical Clock with High Accuracy (2006) Phys. Rev. Lett, 97, p. 020801
dc.descriptionLudlow, D., Zelevinsky, T., Campbell, G.K., Blatt, S., Boyd, M.M., de Miranda, M.H.G., Martin, M.J., Oates, C.W., Sr Lattice Clock at 1 × 10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock (2008) Science, 319, pp. 1805-1808
dc.descriptionLea, S.N., Limits to time variation of fundamental constants from comparisons of atomic frequency standards (2007) Rep. Prog. Phys, 70, pp. 1473-1523
dc.descriptionBaltuska, A., Udem, T., Uiberacker, M., Hentschel, M., Goulielmakis, E., Gohle, C., Holzwarth, R., Krausz, F., Attosecond control, of electronic processes by intense light, fields (2003) Nature, 421, pp. 611-615
dc.descriptionThorpe, M.J., Moll, K.D., Jones, R.J., Safdi, B., Ye, J., Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection (2006) Science, 311, p. 1595
dc.descriptionDiddams, S.A., Hollberg, L., Mbele, V., Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb (2007) Nature, 445, pp. 627-630
dc.descriptionMarian, A., Stowe, M.C., Lawall, J.R., Felinto, D., Ye, J., United Time-Frequency Spectroscopy for Dynamics and Global Structure (2004) Science, 306, pp. 2063-2068
dc.descriptionGoulielmakis, E., Yakovlev, V.S., Cavalieri, A.L., Uiberacker, M., Pervak, V., Apolonski, A., Kienberger, R., Krausz, F., Attosecond Control and Measurement: Lightwave Electronics (2007) Science, 317, pp. 769-775
dc.descriptionKnight, J.C., Photonic Crystal fibers (2003) Nature, 424, pp. 847-851
dc.descriptionTelle, H.R., Steinmayer, G., Dunlop, A.E., Stenger, J., Sutter, D.H., Keller, U., Carrier-envelope offset phase control: A. novel concept for absolute optical frequency measurement and ultrashort pulse generation (1999) Appl. Phys. B, 69, pp. 327-332
dc.descriptionRamond, T.M., Diddams, S.A., Hollberg, L., Bartels, A., Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator (2002) Opt. Lett, 27, pp. 1842-1844
dc.descriptionDel'Haye, P., Schliesser, A., Arcizet, O., Wilken, T., Holzwarth, R., Kippenberg, T.J., Optical frequency comb generation from a monolithic microresonator (2007) Nature, 450, pp. 1214-1217
dc.descriptionDel'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R., Kippenberg, T.J., Full stabilization of a mircoresonator frequency comb (2008) Phys. Rev. Lett, 101, p. 053903
dc.descriptionMurphy, M.T., Udem, T., Holzwarth, R., Sizmann, A., Pasquini, L., Araujo-Hauck, C., Dekker, H., Manescau, A., High-precision wavelength calibration with laser frequency combs (2007) Mon. Not. R. Astron. Soc, 380, pp. 839-847
dc.descriptionC.-Hao Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips., D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, A laser frequency comb that enables radial velocity measurements with a precision of 1 cms-1, Nature 452, 610-612 (2008)Braje, D.A., Kirchner, M.S., Osterman, S., Fortier, T., Diddams, S.A., Astronomical spectrograph calibration with broad-spectrum frequency combs (2008) Eur. Phys. J. D, 48, pp. 57-66
dc.descriptionAgrawal, G.P., (2001) Nonlinear Optical Fiber Optics, , Academic Press, New York
dc.descriptionWeber, H.G., Ludwig, R., Ferber, S., Langhorst, C.S., Kroh, M., Marembert, V., Boerner, C., Schubert, C., Ulcrahigh-Speed OTDM-Transmission Technology (2006) J. Lightwave Technol, 24, pp. 4616-4627
dc.descriptionPitois, S., Fatome, J., Millot, G., Generation of 160-GHz transform limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal (2008) Opt. Lett, 27, pp. 1729-1731
dc.descriptionPitois, S., Finot, C., Fatome, J., Sinardet, B., Millot, G., Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers (2006) Opt. Commun, 260, pp. 301-306
dc.descriptionFatome, J., Pitois, S., Millot, G., 320/640 GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre (2005) Electron. Lett, 41
dc.descriptionFatome, J., Pitois, S., Millot, G., 20-GHz-to-l GHz repetition rate pulse sources based on multiple four-wave mixing in optical fibers (2006) IEEE J. Quantum Electron, 42, pp. 1038-1046
dc.descriptionA. Cerqueira S. Jr, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H.L. Fragnito, and J. C. Knight, Highly efficient generation of broadband cascaded four-wave mixing products, Opt. Express 16, 2816-2828 (2008)L. S. Ma, P. A. Jungner, J. Ye, and J. L. Hall, ' 'Delivering the same optical frequency at two places: accurate cancellation, of phase noise introduced by an optical fiber or other time-varying path, Opt. Lett. 19, 1777-1779 (1994)Young, B.C., Cruz, F.C., Itano, W.M., Bergquist, J.C., Visible lasers with subhertz linewidths (1999) Phys. Rev. Lett, 82, pp. 3799-3802
dc.descriptionJun Ye, Jin-Long Peng, R. Jason Jones, Kevin W. Holman, John L. Hall, and David J. Jones, Scott A. Diddams, John. Kitching, Sebastien Bize, James C. Bergquist, and Leo W. Hollberg, Lennart Robertsson and Long-Sheng Ma, Delivery of high-stability optical and microwave frequency standards over an optical fiber network, J. Opt. Soc. Am. B 20, 1459-1467 (2003)Newbury, N.R., Williams, P.A., Swann, W.C., Coherent transfer of an optical carrier over 251 km (2007) Opt.Lett, 32, pp. 3056-3058
dc.descriptionHill, K.O., Johnson, D.C., Kawasaki, B.S., MacDonald, R.I., cw three-wave mixing in single-mode fibers (1978) J. Appl. Phys, 49, pp. 5098-5106
dc.descriptionZhou, J., Hiu, R., Caponio, N., Spectral linewidch and frequency chirp four-wave mixing components in optical fibers (1994) IEEE Photon. Technol. Lett, 6, pp. 434-436
dc.descriptionRodwell, M., Bowers, J.E., Pullela, R., Gilboney, K., Pusl, J., Nguyen, D., Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz (1995) LEOS Summer Topical Meetings, pp. 21-22. , Institute of Electrical and Electronics Engineers, Piscataway, N.J
dc.descriptionChen, P., Blake, G.A., Gaidis, M.C., Brown, E.R., McIntosh, K.A., Chou, S.Y., Nathan, M.I., Williamson, F., Spectroscopic applications and frequency locking of THz photomixing with discributed-Bragg-reflector diode lasers in. low-temperature-grown GaAs (1997) Appl. Phys. Lett, 71, pp. 1601-1603
dc.descriptionZhang, X.-C., Jin, Y., Ma, X.F., Coherent measurement of THz optical rectification from electro-optic crystals (1992) Appl. Phys. Lett, 61, pp. 2764-2766
dc.descriptionQuraishi, Q., Griebel, M., Kleine-Ostmann, T., Bratschitsch, R., Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime (2005) Opt.. Lett, 30, pp. 3231-3233
dc.descriptionA. Dreyhaupt, S. Winnerl, T. Dekorsy, and M.. Helm, High-intensity terahertz radiation from a microstructured large-area photoconductor, Appl. Phys. Lett. 86, 121114 (2005)Pereira, D., Moraes, J.C.S., Telles, E.M., Scalabrin, A., Strumia, F., Moretti, A., Carelli, G., Massa, C.A., A review of optically pumped far-infrared laser lines from methanol isotopes (1994) Int. J. Infr. Mill. Waves, 15, pp. 1-44
dc.descriptionChampenois, C., Hagel, G., Houssin, M., Knoop, M., Zumsteg, C., Vedel, F., Terahertz Frequency Standard Based on Three-Photon Coherent Population Trapping (2007) Phys. Rev. Lett, 99, p. 013001
dc.descriptionBerkeland, D.J., Miller, J.D., Bergquist, J.C., Itano, W.M., Wineland, D.J., Laser-Cooled Mercury Ion Frequency Standard (1998) Phys. Rev. Lett, 80, pp. 2089-2092
dc.descriptionDiddams, S.A., Udem, T., Bergquist, J.C., Curtis, E.A., Drullinger, R.E., Hollberg, L., Itano, W.M., Wineland, D.J., An optical clock based on a single trapped Hg-199(+) ion (2001) Science, 293, pp. 825-828
dc.descriptionXu, B., Coello, Y., Lozovoy, V.V., Ahmasi Harris, D., Dantus, M., Pulse shaping of octave spanning femtosecond laser pulses (2006) Opt. Express, 14, pp. 10939-10944
dc.descriptionStowe, M.C., Cruz, F.C., Marian, A., Ye, J., Coherent population transfer dynamics controlled by pulse accumulation and spectral phase manipulation (2006) Phys. Rev. Lett, 96, p. 153001
dc.descriptionde Araujo, L.E.E., Selective and efficient excitation of diatomic molecules by an ultrashort pulse train (2008) Phys. Rev. A, 77, p. 033419
dc.languageen
dc.publisherOptical Society of American (OSA)
dc.relationOptics Express
dc.rightsfechado
dc.sourceScopus
dc.titleOptical Frequency Combs Generated By Fourwave Mixing In Optical Fibers For Astrophysical Spectrometer Calibration And Metrology
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución