Artículos de revistas
Differential Gene Expression In Acidithiobacillus Ferrooxidans Lr Planktonic And Attached Cells In The Presence Of Chalcopyrite
Registro en:
Journal Of Basic Microbiology. Wiley-vch Verlag, v. 54, n. 7, p. 650 - 657, 2014.
0233111X
10.1002/jobm.201300871
2-s2.0-84904135149
Autor
Ossa Henao D.M.
Vicentini R.
Rodrigues V.D.
Bevilaqua D.
Ottoboni L.M.M.
Institución
Resumen
Acidithiobacillus ferrooxidans is commonly used in bioleaching operations to recover copper from sulfide ores. It is commonly accepted that A. ferrooxidans attaches to mineral surfaces by means of extracellular polymeric substances (EPS), however the role of type IV pili and tight adherence genes in this process is poorly understood. Genes related to the formation of type IV pili and tight adherence were identified in the genome of the bacterium, and in this work, we show that A. ferrooxidans actively expresses these genes, as demonstrated by quantitative real-time PCR analysis using cells incubated with chalcopyrite for 2h. Significant differences in gene expression were observed between planktonic and adhered cells, with the level of expression being much greater in planktonic cells. These results might indicate that planktonic cells can actively adhere to the substrate. A bioinformatics analysis of interaction networks of the tight adherence and type IV pilus assembly genes revealed a strong relationship between conjugation systems (tra operon) and regulatory systems (PilR, PilS). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 54 7 650 657 Harneit, K., Sand, W., Influence of growth substrate and attachment substratum on EPS and biofilm formation by Acidithiobacillus ferrooxidans (2007) Adv. Mat. Res., 20, pp. 385-388 Yu, R.I., Tan, J.X., Yang, P., Sun, J., EPS-contact-leaching mechanism of chalcopyrite concentrates by A. ferrooxidans (2008) T. Nonferr. M Soc., 18, pp. 1427-1432 Vera, M., Rohwerder, T., Bellenberg, S., Sand, W., Characterization of biofilm formation by the bioleaching acidophilic bacterium Acidithiobacillus ferrooxidans by a microarray transcriptome analysis (2009) Adv. Mat. Res., 71, pp. 175-178 González, A., Bellenberg, S., Mamani, S., Ruiz, L., AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans (2012) Appl. Microbiol. Biotechnol., 97, pp. 3729-3737 Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications (2008) BMC Genomics, 9, p. 597 Barreto, M., Quatrini, R., Bueno, S., Arriagada, C., Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence (2003) Hydrometallurgy, 71, pp. 97-105 Valenzuela, L., Chi, A., Beard, S., Orell, A., Genomics, metagenomics and proteomics in biomining microorganisms (2006) Biotechnol. Adv., 24, pp. 197-211 Craig, L., Pique, M.E., Tainer, J.A., Type IV pilus structure and bacterial pathogenicity (2004) Nat. Rev. Microbiol., 2, pp. 363-378 Clausen, M., Koomey, M., Maier, B., Dynamics of type IV pili is controlled by switching between multiple states (2009) Biophys. J., 96, pp. 1169-1177 Mattick, J.S., Type IV pili and twitching motility (2002) Annu. Rev. Microbiol., 56, pp. 289-314 Merz, A.J., Forest, K.T., Bacterial surface motility: slime trails, grappling hooks and nozzles (2002) Curr. Biol., 12, pp. 297-303 Satyshur, K.A., Worzalla, G.A., Meyer, L.S., Heiniger, E.K., Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility (2007) Structure, 15, pp. 363-376 Kaiser, D., Bacterial swarming: a re-examination of cell-movement patterns (2007) Curr. Biol., 17, pp. 561-570 Asikyan, M.L., Kus, J.V., Burrows, L.L., Novel proteins that modulate type IV pilus retraction dynamics in Pseudomonas aeruginosa (2008) J. Bacteriol., 190, pp. 7022-7034 Bhattacharjee, M.K., Kachlany, S.C., Fine, D.H., Figurski, D.H., Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans: TadA protein is an ATPase (2001) J. Bacteriol., 183, pp. 5927-5936 Darzins, A., Russell, M.A., Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system (1997) Gene, 192, pp. 109-115 Clock, S.A., Planet, P.J., Perez, B.A., Figurski, D.H., Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans (2008) J. Bacteriol., 190, pp. 980-990 Garcia Jr, O., Isolation and purification of Thiobacillus ferrooxidans and Thiobacillus thiooxidans from some coal and uranium mines of Brazil (1991) Rev. Microbiol., 20, pp. 1-6 Tuovinen, O.H., Kelly, D.P., Studies on the growth of Thiobacillus ferrooxidans: I. Use of membrane filters and ferrous iron agar to determine viable number and comparison with 14CO2 fixation and iron oxidation as measures of growth (1973) Arch. Microbiol., 88, pp. 285-298 Felício, A.N., (2008), p. 180. , Análise proteômica diferencial de Acidithiobacillus ferrooxidans em resposta aos sulfetos minerais calcopirita e bornita e efeito de uma proteína recombinante de A. ferrooxidans LR contendo cisteína na oxidação bacteriana da calcopirita. Thesis (PhD), University of Estadual Paulista 'Júlio de Mesquita Filho'Garcia, A., Jerez, C.A., Changes on the solid-adhered populations of Thiobacillus ferrooxidans, Leptospirillum ferrooxidans and Thiobacillus thiooxidans in leaching ores as determined by immunological analysis (1995) Biohydrometallurgical Processing, pp. 19-30. , Jerez CA, Vargas T, Wiertz JV. (Eds.), University of Chile, Santiago Ohmura, N., Tsugita, K., Koizumi, J., Saika, H., Sulfur-binding protein of flagella of Thiobacillus ferrooxidans (1996) J. Bacteriol., 178, pp. 5776-5780 Paulino, L.C., Mello, M.P., Ottoboni, L.M.M., Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction (2002) Electrophoresis, 23, pp. 520-527 Yarzábal, A., Appia-Ayme, C., Ratouchniak, J., Bonnefoy, V., Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin (2004) Microbiology, 150, pp. 2113-2123 Nieto, P.A., Covarrubias, P.C., Jedlicki, E., Holmes, D.S., Quatrini, R., Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans (2009) BMC Mol. Biol., 10, p. 63 Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDC(T) method (2001) Methods, 25, pp. 402-408 Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored (2011) Nucl. Acids Res., 39, pp. 561-568 Tatusov, R., Fedorova, N., Jackson, J., Jacobs, A., The COG database: an updated version includes eukaryotes (2003) BMC Bioinformatics, 4, p. 41 Mousavi, S.M., Yaghmaei, S., Salimi, F., Jafari, A., Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: flask experiments (2006) Fuel, 85, pp. 2555-2560 Alm, R.A., Mattick, J.S., Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa (1997) Gene, 192, pp. 89-98 Christie, P.J., Vogel, J.P., Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells (2000) Trends Microbiol., 8, pp. 354-360 Harneit, K., Göksel, A., Kock, D., Klock, J.H., Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans (2006) Hydrometallurgy, 83, pp. 245-254 Kaiser, D., Bacterial motility: how do pili pull (2000) Curr. Biol., 10, pp. 777-780 Baron, C., From bioremediation to biowarfare: On the impact and mechanism of type IV secretion systems (2005) FEMS Microbiol. Lett., 253, pp. 163-170 Díaz, E., Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility (2004) Int. Microbiol., 7, pp. 173-180 Molin, S., Tolker-Nielsen, T., Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilization of the biofilm structure (2003) Curr. Opin. Biotechnol., 14, pp. 255-261 Wall, D., Kaiser, D., Type IV pili and cell motility (1999) Mol. Microbiol., 32, pp. 1-10 Fernández, L.A., Berenguer, J., Secretion and assembly of regular surface structures in Gram-negative bacteria (2000) FEMS Microbiol. Rev., 24, pp. 21-44 Ayers, M., Sampaleanu, L.M., Tammam, S., Koo, J., PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin (2009) J. Mol. Biol., 394, pp. 128-142 Martin, P.R., Watson, A.A., McCaul, T.F., Mattick, J.S., Characterization of a five gene cluster required for the biogenesis of type-4 fimbriae in Pseudomonas aeruginosa (1995) Mol. Microbiol., 16, pp. 497-508 Farah, C., Vera, M., Morin, D., Haraz, D., Evidence for a functional quorum-sensing type Al-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans (2005) Appl. Environ. Microbiol., 71, pp. 7033-7040 Bassler, B., Small talk: cell-to-cell communication in bacteria (2002) Cell, 109, pp. 421-424 Parker, D., Kennan, R.M., Myers, G.S., Paulsen, I.T., Regulation of type IV fimbrial biogenesis in Dichelobacter nodosus (2006) J. Bacteriol., 188, pp. 4801-4811 da Silva Neto, J.F., Koide, T., Abe, C.M., Gomes, S.L., Marques, M.V., Role of σ54 in the regulation of genes involved in type I and type IV pili biogenesis in Xylella fastidiosa (2008) Arch. Microbiol., 189, pp. 249-261 Buck, M., Gallegos, M.T., Studholme, D.J., Guo, Y., Gralla, J.D., The bacterial enhancer-dependent σ54 (σN) transcription factor (2000) J. Bacteriol., 182, pp. 4129-4136 Ishimoto, K.S., Lory, S., Identification of pilR, which encodes a transcriptional activator of the Pseudomonas aeruginosa pilin gene (1992) J. Bacteriol., 174, pp. 3514-3521