dc.creatorDias R.
dc.creatorFerreira C.S.
dc.creatorGarcia N.L.
dc.date2008
dc.date2015-06-30T19:36:47Z
dc.date2015-11-26T14:45:52Z
dc.date2015-06-30T19:36:47Z
dc.date2015-11-26T14:45:52Z
dc.date.accessioned2018-03-28T21:55:14Z
dc.date.available2018-03-28T21:55:14Z
dc.identifier
dc.identifierStatistical Inference For Stochastic Processes. , v. 11, n. 1, p. 11 - 34, 2008.
dc.identifier13870874
dc.identifier10.1007/s11203-006-9005-5
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-35648938116&partnerID=40&md5=cbf7933d86662c6285317ec6f697f5a6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106839
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106839
dc.identifier2-s2.0-35648938116
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252614
dc.descriptionLet f: [a,b] → ℝ be an unknown 2 times differentiable function and consider M to be an α- homogeneous Poisson process on Graf(f). The goal is to estimate f having a sample of the inhomogeneous Poisson process N constructed by dislocating each point of M perpendicularly to Graf(f) by a normal random variable with zero mean and constant variance σ2. The exact formulas for the mean measure and the intensity function of N are obtained. Then, the function f is estimated directly using a hybrid spline approach to penalized maximum likelihood. Simulation results indicate the procedure to be consistent as α → ∞ and σ2 → 0. © 2006 Springer Science+Business Media, LLC.
dc.description11
dc.description1
dc.description11
dc.description34
dc.descriptionDaley, D.J., Vere-Jones, D., (1988) An Introduction to the Theory of Point Processes, , Springer-Verlag New York
dc.descriptionDias, R., Density estimation via hybrid splines (1998) J Stat Comput Simul, 60, pp. 277-294
dc.descriptionDias, R., Sequential adaptive non parametric regression via H-splines (1999) Commun Stat: Comput Simul, 28, pp. 501-515
dc.descriptionDudewicz, E.J., Mishra, S.N., (1988) Modern Mathematical Statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, , Wiley Inc. New York
dc.descriptionGarcia, N.L., Maximum likelihood estimation and suboptimal stopping time for a Poisson point process (1995) Rebrape, 9, pp. 67-82. , 1
dc.descriptionKutoyants, Y.A., Intensity parameter estimation of an inhomogeneous Poisson process (1979) Probl Control Inform Theory/Probl Upravlen Teor Inform, 8, pp. 137-149. , 2
dc.descriptionKutoyants, Y.A., (1998) Statistical Inference for Spatial Poisson Processes, , Springer-Verlag New York Lecture Notes in Statistics, vol. 134
dc.descriptionLuo, Z., Wahba, G., Hybrid adaptive splines (1997) J Am Stat Assoc, 92, pp. 107-116
dc.descriptionRamlau-Hansen, H., Smoothing counting process intensities by means of kernel functions (1983) Ann Stat, 11, pp. 453-466. , 2
dc.descriptionResnick, S., (1992) Adventures in Stochastic Processes, , Birkhäuser Boston Inc. Boston, MA
dc.descriptionWahba, G., (1990) Spline Models for Observational Data, , SIAM Philadelphia, PA
dc.descriptionWegman, E.J., Wright, I.W., Splines in statistics (1983) J Am Stat Assoc, 78, pp. 351-365
dc.languageen
dc.publisher
dc.relationStatistical Inference for Stochastic Processes
dc.rightsfechado
dc.sourceScopus
dc.titlePenalized Maximum Likelihood Estimation For A Function Of The Intensity Of A Poisson Point Process
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución