dc.creatorAndreani R.
dc.creatorFriedlander A.
dc.creatorMello M.P.
dc.creatorSantos S.A.
dc.date2008
dc.date2015-06-30T19:33:47Z
dc.date2015-11-26T14:45:35Z
dc.date2015-06-30T19:33:47Z
dc.date2015-11-26T14:45:35Z
dc.date.accessioned2018-03-28T21:54:50Z
dc.date.available2018-03-28T21:54:50Z
dc.identifier
dc.identifierJournal Of Global Optimization. , v. 40, n. 4, p. 505 - 527, 2008.
dc.identifier9255001
dc.identifier10.1007/s10898-006-9109-x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-39749087418&partnerID=40&md5=e1863526e1e501593379361a2a4f5146
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106670
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106670
dc.identifier2-s2.0-39749087418
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252520
dc.descriptionReformulations of a generalization of a second-order cone complementarity problem (GSOCCP) as optimization problems are introduced, which preserve differentiability. Equivalence results are proved in the sense that the global minimizers of the reformulations with zero objective value are solutions to the GSOCCP and vice versa. Since the optimization problems involved include only simple constraints, a whole range of minimization algorithms may be used to solve the equivalent problems. Taking into account that optimization algorithms usually seek stationary points, a theoretical result is established that ensures equivalence between stationary points of the reformulation and solutions to the GSOCCP. Numerical experiments are presented that illustrate the advantages and disadvantages of the reformulations. © 2007 Springer Science+Business Media, Inc.
dc.description40
dc.description4
dc.description505
dc.description527
dc.descriptionAlizadeh, F., Goldfarb, D., Second-order cone programming (2003) Math. Program., 95, pp. 3-51
dc.descriptionAndreani, R., Friedlander, A., Mello, M.P., Santos, S.A., (2005) Generalized Second-order Complementarity Problems: Theory and Numerical Experiments, , http://www.ime.unicamp.br/andreani, Technical Report, IMECC, Unicamp, January
dc.descriptionAndreani, R., Friedlander, A., Santos, S.A., On the resolution of generalized nonlinear complementarity problems (2001) SIAM J. Optimiz., 12, pp. 303-321
dc.descriptionAndreani, R., Martínez, J.M., Schuverdt, M.L., On the relation between constant positive linear dependence condition and quasinormality constraint qualification (2005) J. Optimiz. Theory Appl., 125, pp. 473-485
dc.descriptionBertsekas, D.P., (1999) Nonlinear Programming, , 2 Athena Scientific Belmont, Massachusetts
dc.descriptionBielchowsky, R.H., Friedlander, A., Gomes, F.A.M., Martínez, J.M., Raydan, M., An adaptive algorithm for bound constrained quadratic minimization (1997) Invest. Operat., 7, pp. 67-102
dc.descriptionBuss, M., Hashimoto, H., Moore, J.B., Dextrous hand grasping force optimization (1996) IEEE Trans. Robot. Automat., 12, pp. 406-418
dc.descriptionChen, J.-S., Tseng, P., (2004) An Unconstrained Smooth Minimization Reformulation of the Second-order Cone Complementarity Problem, , Technical Report, July
dc.descriptionChen, J.-S., (2004) A New Merit Function and Its Related Properties for the Second-order Cone Complementarity Problem, , Technical Report, October
dc.descriptionFacchinei, F., Soares, J., A new merit function for nonlinear complementarity problems and a related algorithm (1997) SIAM J. Optimiz., 7, pp. 225-247
dc.descriptionFerris, M.C., Pang, J.-S., Engineering and economic applications for nonlinear complementarity problems (1997) SIAM Rev., 39, pp. 669-713
dc.descriptionFischer, A., A special Newton-type optimization methods (1992) Optimization, 24, pp. 269-284
dc.descriptionFriedlander, A., Martínez, J.M., Santos, S.A., A new trust region algorithm for bound constrained minimization (1994) Appl. Math. Optimiz., 30, pp. 235-266
dc.descriptionGeiger, C., Kanzow, C., On the resolution of monotone complementarity problems (1996) Comput. Optimiz. Appl., 5, pp. 155-173
dc.descriptionHan, L., Trinkle, J.C., Li, Z.X., Grasp analysis as linear matrix inequality problems (2000) IEEE Trans. Robot. Automat., 16, pp. 663-674. , 06
dc.descriptionHayashi, S., Yamashita, N., Fukushima, M., A combined smoothing and regularization method for monotone second-order cone complementarity problems (2005) SIAM J. Optimiz., 15, pp. 593-615
dc.descriptionKrejić, N., Martínez, J.M., Mello, M.P., Pilotta, E.A., Validation of an augmented Lagrangian algorithm with a Gauss-Newton Hessian approximation using a set of hard-spheres problems (2000) Comput. Optimiz. Appl., 16, pp. 247-263
dc.descriptionLobo, M., Vandenberghe, L., Boyd, S., Lebret, H., Applications of second-order cone programming (1998) Linear Algebra Appl., 284, pp. 193-228
dc.descriptionPeng, J.-M., Yuan, Y.-X., Unconstrained methods for generalized complementarity Problems (1997) J. Comput. Math., 15, pp. 253-264
dc.descriptionYamada, K., Yamashita, N., Fukushima, M., Pillo, G.D., Giannessi, F., A new derivative-free descent method for the nonlinear complementarity problem (2000) Nonlinear Optimization and Related Topics, pp. 463-489. , Kluwer Academic Publishers Netherlands
dc.languageen
dc.publisher
dc.relationJournal of Global Optimization
dc.rightsfechado
dc.sourceScopus
dc.titleBox-constrained Minimization Reformulations Of Complementarity Problems In Second-order Cones
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución