dc.creatorSonoda M.T.
dc.creatorMartinez L.
dc.creatorWebb P.
dc.creatorSkaf M.S.
dc.creatorPolikarpov I.
dc.date2008
dc.date2015-06-30T19:32:35Z
dc.date2015-11-26T14:45:24Z
dc.date2015-06-30T19:32:35Z
dc.date2015-11-26T14:45:24Z
dc.date.accessioned2018-03-28T21:54:36Z
dc.date.available2018-03-28T21:54:36Z
dc.identifier
dc.identifierMolecular Endocrinology. , v. 22, n. 7, p. 1565 - 1578, 2008.
dc.identifier8888809
dc.identifier10.1210/me.2007-0501
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-46349088224&partnerID=40&md5=f899b0f88f3e35939e986a882c48e9f1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106636
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106636
dc.identifier2-s2.0-46349088224
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252456
dc.descriptionEstrogen Receptor (ER) is an important target for pharmaceutical design. Like other ligand-dependent transcription factors, hormone binding regulates ER transcriptional activity. Nevertheless, the mechanisms by which ligands enter and leave ERs and other nuclear receptors remain poorly understood. Here, we report results of locally enhanced sampling molecular dynamics simulations to identify dissociation pathways of two ER ligands [the natural hormone 17β-estradiol (E2) and the selective ER modulator raloxifene (RAL)] from the human ERα ligand-binding domain in monomeric and dimeric forms. E 2 dissociation occurs via three different pathways in ER monomers. One resembles the mousetrap mechanism (Path I), involving repositioning of helix 12 (H12), others involve the separation of H8 and H11 (Path II), and a variant of this pathway at the bottom of the ligand-binding domain (Path II′). RAL leaves the receptor through Path I and a Path I variant in which the ligand leaves the receptor through the loop region between H11 and H12 (Path I′). Remarkably, ER dimerization strongly suppresses Paths II and II′ for E2 dissociation and modifies RAL escape routes. We propose that differences in ligand release pathways detected in the simulations for ER monomers and dimers provide an explanation for previously observed effects of ER quaternary state on ligand dissociation rates and suggest that dimerization may play an important, and hitherto unexpected, role in regulation of ligand dissociation rates throughout the nuclear receptor family. Copyright © 2008 by The Endocrine Society.
dc.description22
dc.description7
dc.description1565
dc.description1578
dc.descriptionAranda, A., Pascual, A., Nuclear hormone receptors and gene expression (2001) Physiol Rev, 81, pp. 1269-1304
dc.descriptionJordan, V.C., Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions (2003) J Med Chem, 46, pp. 883-908
dc.descriptionJordan, V.C., Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents (2003) J Med Chem, 46, pp. 1081-1111
dc.descriptionNilsson, S., Gustafsson, J.A., Estrogen receptor transcription and transactivation: Basic aspects of estrogen action (2000) Breast Cancer Res, 2, pp. 360-366
dc.descriptionNilsson, S., Koehler, K.F., Oestrogen receptors and selective oestrogen receptor modulators: Molecular and cellular pharmacology (2005) Basic Clin Pharm Toxicol, 96, pp. 15-25
dc.descriptionMuramatsu, M., Inoue, S., Estrogen receptors: How do they control reproductive and nonreproductive functions? (2000) Biochem Biophys Res Commun, 270, pp. 1-10
dc.descriptionGee, A.C., Katzenellenbogen, J.A., Probing conformational changes in the estrogen receptor: Evidence for a partially unfolded intermediate facilitating ligand binding and release (2001) Mol Endocrinol, 15, pp. 421-428
dc.descriptionTamrazi, A., Carlson, K.E., Katzenellenbogen, J.A., Molecular sensors of estrogen receptor conformations and dynamics (2003) Mol Endocrinol, 17, pp. 2593-2602
dc.descriptionGronemeyer, H., Gustafsson, J.A., Laudet, V., Principles for modulation of the nuclear receptor superfamily (2004) Nat Rev Drug Discovery, 3, pp. 950-964
dc.descriptionNettles, K.W., Greene, G.L., Ligand control of coregulator recruitment to nuclear receptors (2005) Annu Rev Physiol, 67, pp. 309-333
dc.descriptionMoras, D., Gronemeyer, H., The nuclear receptor ligand-binding domain: Structure and function (1998) Curr Opin Cell Biol, 10, pp. 384-391
dc.descriptionNolte, R.T., Wisely, G.B., Westin, S., Cobb, J.E., Lambert, M.H., Kurokawa, R., Rosenfeld, M.G., Milburn, M.V., Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ (1998) Nature, 395, pp. 137-143
dc.descriptionWang, L., Zuercher, W.J., Consler, T.G., Lambert, M.H., Miller, A.B., Orband-Miller, L.A., McKee, D.D., Nolte, R.T., X-ray crystal structures of the estrogen-related receptor-γ ligand binding domain in three functional states reveal the molecular basis of small molecule regulation (2006) J Biol Chem, 281, pp. 37773-37781
dc.descriptionKallen, J., Schlaeppi, J.M., Bitsch, F., Filipuzzi, I., Schilb, A., Riou, V., Graham, A., Fournier, B., Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERR α) - Crystal structure of ERR α ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1 α (2004) J Biol Chem, 279, pp. 49330-49337
dc.descriptionFlaig, R., Greschik, H., Peluso-Iltis, C., Moras, D., Structural basis for the cell-specific activities of the NGFI-B and the Nurr1 ligand-binding domain (2005) J Biol Chem, 280, pp. 19250-19258
dc.descriptionBaker, K.D., Shewchuk, L.M., Kozlova, T., Makishima, M., Hassell, A., Wisely, B., Caravella, J.A., Mangelsdorf, D.J., The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway (2003) Cell, 113, pp. 731-742
dc.descriptionWagner, R.L., Apriletti, J.W., Mcgrath, M.E., West, B.L., Baxter, J.D., Fletterick, R.J., A structural role for hormone in the thyroid-hormone receptor (1995) Nature, 378, pp. 690-697
dc.descriptionBlondel, A., Renaud, J.P., Fischer, S., Moras, D., Karplus, M., Retinoic acid receptor: A simulation analysis of retinoic acid binding and the resulting conformational changes (1999) J Mol Biol, 291, pp. 101-115
dc.descriptionKosztin, D., Izrailev, S., Schulten, K., Unbinding of retinoic acid from its receptor studied by steered molecular dynamics (1999) Biophys J, 76, pp. 188-197
dc.descriptionCarlsson, P., Burendahl, S., Nilsson, L., Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics (2006) Biophys J, 91, pp. 3151-3161
dc.descriptionMartinez, L., Sonoda, M.T., Webb, P., Baxter, J.D., Skaf, M.S., Polikarpov, I., Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors (2005) Biophys J, 89, pp. 2011-2023
dc.descriptionMartinez, L., Webb, P., Polikarpov, I., Skaf, M.S., Molecular dynamics simulations of ligand dissociation from thyroid hormone receptors: Evidence of the likeliest escape pathway and its implications for the design of novel ligands (2006) J Med Chem, 49, pp. 23-26
dc.descriptionTamrazi, A., Carlson, K.E., Rodriguez, A.L., Katzenellenbogen, J.A., Coactivator proteins as determinants of estrogen receptor structure and function: Spectroscopic evidence for a novel coactivator-stabilized receptor conformation (2005) Mol Endocrinol, 19, pp. 1516-1528
dc.descriptionRibeiro, R.C.J., Feng, W.J., Wagner, R.L., Costa, C.H.R.M., Pereira, A.C., Apriletti, J.W., Fletterick, R.J., Baxter, J.D., Definition of the surface in the thyroid hormone receptor ligand binding domain for association as homodimers and heterodimers with retinoid X receptor (2001) J Biol Chem, 276, pp. 14987-14995
dc.descriptionZhong, L., Skafar, D.F., Mutations of tyrosine 537 in the human estrogen receptor-α selectively alter the receptor's affinity for estradiol and the kinetics of the interaction (2002) Biochemistry, 41, pp. 4209-4217
dc.descriptionWeichman, B.M., Notides, A.C., Estradiol-binding kinetics of activated and non-activated estrogen-receptor (1977) J Biol Chem, 252, pp. 8856-8862
dc.descriptionTamrazi, A., Carlson, K.E., Daniels, J.R., Hurth, K.M., Katzenellenbogen, J.A., Estrogen receptor dimerization: Ligand binding regulates dimer affinity and dimer dissociation rate (2002) Mol Endocrinol, 16, pp. 2706-2719
dc.descriptionGee, A.C., Carlson, K.E., Martini, P.G.V., Katzenellenbogen, B.S., Katzenellenbogen, J.A., Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with the estrogen receptor (1999) Mol Endocrinol, 13, pp. 1912-1923
dc.descriptionCarlson, K.E., Choi, I., Gee, A., Katzenellenbogen, B.S., Katzenellenbogen, J.A., Altered ligand binding properties and enhanced stability of a constitutively active estrogen receptor: Evidence that an open pocket conformation is required for ligand interaction (1997) Biochemistry, 36, pp. 14897-14905
dc.descriptionEkena, K., Weis, K.E., Katzenellenbogen, J.A., Katzenellenbogen, B.S., Identification of amino acids in the hormone binding domain of the human estrogen receptor important in estrogen binding (1996) J Biol Chem, 271, pp. 20053-20059
dc.descriptionKubli-Garfias, C., Comparative study of the electronic structure of estradiol, epiestradiol and estrone by ab initio theory (1998) Theochem J Mol Struct, 452, pp. 175-183
dc.descriptionSkafar, D.F., Koide, S., Understanding the human estrogen receptor-α using targeted mutagenesis (2006) Mol Cell Endocrinol, 246, pp. 83-90
dc.descriptionBledsoe, R.K., Madauss, K.P., Holt, J.A., Apolito, C.J., Lambert, M.H., Pearce, K.H., Stanley, T.B., Williams, S.P., A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor (2005) J Biol Chem, 280, pp. 31283-31293
dc.descriptionSack, J.S., Kish, K.F., Wang, C.H., Attar, R.M., Kiefer, S.E., An, Y.M., Wu, G.Y., Einspahr, H.M., Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone (2001) Proc Natl Acad Sci USA, 98, pp. 4904-4909
dc.descriptionKauppi, B., Jakob, C., Farnegardh, M., Yang, J., Ahola, H., Alarcon, M., Calles, K., Carlquist, M., The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism (2003) J Biol Chem, 278, pp. 22748-22754
dc.descriptionWilliams, S.P., Sigler, P.B., Atomic structure of progesterone complexed with its receptor (1998) Nature, 393, pp. 392-396
dc.descriptionKoide, A., Zhao, C.Q., Naganuma, M., Abrams, J., Deighton-Collins, S., Skafar, D.F., Koide, S., Identification of regions within the F domain of the human estrogen receptor α that are important for modulating transactivation and protein-protein interactions (2007) Mol Endocrinol, 21, pp. 829-842
dc.descriptionMontano, M.M., Muller, V., Trobaugh, A., Katzenellenbogen, B.S., The carboxy-terminal F-domain of the human estrogen-receptor: Role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists (1995) Mol Endocrinol, 9, pp. 814-825
dc.descriptionPeters, G.A., Khan, S.A., Estrogen receptor domains E and F: Role in dimerization and interaction with coactivator RIP-140 (1999) Mol Endocrinol, 13, pp. 286-296
dc.descriptionElber, R., Karplus, M., Enhanced sampling in molecular-dynamics - use of the time-dependent Hartree approximation for a simulation of carbon-monoxide diffusion through myoglobin (1990) J Am Chem Soc, 112, pp. 9161-9175
dc.descriptionUlitsky, A., Elber, R., The thermal-equilibrium aspects of the time-dependent Hartree and the locally enhanced sampling approximations - formal properties, a correction, and computational examples for rare-gas clusters (1993) J Chem Phys, 98, pp. 3380-3388
dc.descriptionStraub, J.E., Karplus, M., Energy equipartitioning in the classical time-dependent Hartree approximation (1991) J Chem Phys, 94, pp. 6737-6739
dc.descriptionUlitsky, A., Elber, R., Application of the locally enhanced sampling (LES) and a mean-field with a binary collision correction (Cles) to the simulation of Ar diffusion and no recombination in myoglobin (1994) J Phys Chem, 98, pp. 1034-1043
dc.descriptionGibson, Q.H., Regan, R., Elber, R., Olson, J.S., Carver, T.E., Distal pocket residues affect picosecond ligand recombination in myoglobin - an experimental and molecular-dynamics study of position 29 mutants (1992) J Biol Chem, 267, pp. 22022-22034
dc.descriptionScott, E.E., Gibson, Q.H., Olson, J.S., Mapping the pathways for O-2 entry into and exit from myoglobin (2001) J Biol Chem, 276, pp. 5177-5188
dc.descriptionBrunori, M., Gibson, Q.H., Cavities and packing defects in the structural dynamics of myoglobin (2001) EMBO Rep, 2, pp. 674-679
dc.descriptionKaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L., Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides (2001) J Phys Chem B, 105, pp. 6474-6487
dc.descriptionJorgensen, W.L., Maxwell, D.S., TiradoRives, J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids (1996) J Am Chem Soc, 118, pp. 11225-11236
dc.descriptionFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Hasegawa, J., (2004) Gaussian 03, revision, (C.02). , Gaussian, Inc, Wallingford CT
dc.descriptionPonder JW 2004 TINKER Software Tools for Molecular Design, version 4.2Sali, A., Blundell, T.L., Comparative protein modeling by satisfaction of spatial restraints (1993) J Mol Biol, 234, pp. 779-815
dc.descriptionLiu, D.C., Nocedal, J., On the limited memory Bfgs method for large-scale optimization (1989) Math Program, 45, pp. 503-528
dc.descriptionPhillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable molecular dynamics with NAMD (2005) J Comput Chem, 26, pp. 1781-1802
dc.descriptionSonoda, M.T., Moreira, N.H., Martinez, L., Favero, F.W., Vechi, S.M., Martins, L.R., Skaf, M.S., A review on the dynamics of water (2004) Braz J Physics, 34, pp. 3-16
dc.languageen
dc.publisher
dc.relationMolecular Endocrinology
dc.rightsfechado
dc.sourceScopus
dc.titleLigand Dissociation From Estrogen Receptor Is Mediated By Receptor Dimerization: Evidence From Molecular Dynamics Simulations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución