dc.creatorDiniz-Ehrhardt M.A.
dc.creatorMartinez J.M.
dc.creatorRaydan M.
dc.date2008
dc.date2015-06-30T19:31:24Z
dc.date2015-11-26T14:45:18Z
dc.date2015-06-30T19:31:24Z
dc.date2015-11-26T14:45:18Z
dc.date.accessioned2018-03-28T21:54:28Z
dc.date.available2018-03-28T21:54:28Z
dc.identifier
dc.identifierJournal Of Computational And Applied Mathematics. , v. 219, n. 2, p. 383 - 397, 2008.
dc.identifier3770427
dc.identifier10.1016/j.cam.2007.07.017
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-46749084262&partnerID=40&md5=719f960e0576e0ba1385a3c5d5f615a4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106588
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106588
dc.identifier2-s2.0-46749084262
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252430
dc.descriptionA tolerant derivative-free nonmonotone line-search technique is proposed and analyzed. Several consecutive increases in the objective function and also nondescent directions are admitted for unconstrained minimization. To exemplify the power of this new line search we describe a direct search algorithm in which the directions are chosen randomly. The convergence properties of this random method rely exclusively on the line-search technique. We present numerical experiments, to illustrate the advantages of using a derivative-free nonmonotone globalization strategy, with approximated-gradient type methods and also with the inverse SR1 update that could produce nondescent directions. In all cases we use a local variation finite differences approximation to the gradient. © 2007 Elsevier B.V. All rights reserved.
dc.description219
dc.description2
dc.description383
dc.description397
dc.descriptionAlberto, P., Nogueira, F., Rocha, H., Vicente, L.N., Pattern search methods for user-provided points: application to molecular geometry problems (2004) SIAM J. Opt., 14, pp. 1216-1236
dc.descriptionAllaire, G., (2001) Shape Optimization by the Homogenization Method, , Springer, New York
dc.descriptionBarzilai, J., Borwein, J.M., Two point step size gradient methods (1988) IMA J. Numer. Anal., 8, pp. 141-148
dc.descriptionVan den Berghen, F., Bersini, H., CONDOR, a new parallel, constrained extension of Powell's UOBYQA algorithm: experimental results and comparison with the DFO algorithm (2005) J. Comput. Appl. Math., 181, pp. 157-175
dc.descriptionBirgin, E.G., Martínez, J.M., Raydan, M., Inexact spectral gradient method for convex-constrained optimization (2003) IMA J. Numer. Anal., 23, pp. 539-559
dc.descriptionBrezinski, C., Matos, A.C., A derivation of extrapolation algorithms based on error estimates (1996) J. Comput. Appl. Math., 66, pp. 5-26
dc.descriptionC. Brezinski, M. Redivo Zaglia, Extrapolation Methods, Theory and Practice, North-Holland, Amsterdam, 1991Broyden, C.G., Quasi-Newton methods and their application to function minimization (1967) Math. Comput., 21, pp. 368-381
dc.descriptionByrd, R.H., Khalfan, H.F., Schnabel, R.B., Analysis of a rank-one trust region method (1996) SIAM J. Opt., 6, pp. 1025-1039
dc.descriptionConn, A.R., Gould, N.I.M., Toint, P.L., Convergence of quasi-Newton matrices generated by the symmetric rank one update (1991) Math. Programming, 50, pp. 177-195
dc.descriptionConn, A.R., Scheinberg, K., Toint, Ph.L., Recent progress in unconstrained nonlinear optimization without derivatives (1997) Math. Programming, 79, pp. 397-414
dc.descriptionA. L. Custódio, J. E. Dennis Jr., L. N. Vicente, Using simplex gradients of nonsmooth functions in direct search methods, IMA J. Numer., to appearDavidon, W.C., Variance algorithms for minimization (1968) Comput. J., 10, pp. 406-410
dc.descriptionDennis Jr., J.E., Schnabel, R.B., (1983) Numerical Methods for Unconstrained Optimization and Nonlinear Equations, , Prentice-Hall, Englewood Cliffs, NJ
dc.descriptionDiniz-Ehrhardt, M.A., Gomes-Ruggiero, M.A., Lopes, V.L.R., Martínez, J.M., Discrete Newton's method with local variations and global convergence for nonlinear equations (2003) Optimization, 52, pp. 417-440
dc.descriptionFiacco, A.V., McCormick, G.P., (1968) Nonlinear Programming: Sequential Unconstrained Minimization Techniques, , Wiley, New York
dc.descriptionFletcher, R., (1987) Practical Methods of Optimization, , Wiley, New York
dc.descriptionGilmore, P., Kelley, C.T., An implicit filtering algorithm for optimization of functions with many local minima (1995) SIAM J. Opt., 5, pp. 269-285
dc.descriptionGrippo, L., Lampariello, F., Lucidi, S., A nonmonotone line search technique for Newton's method (1986) SIAM J. Numer. Anal., 23, pp. 707-716
dc.descriptionHaslinger, J., Mäckinen, R.A.E., (2003) Introduction to Shape Optimization: Theory, Approximation, and Computation, , SIAM, Philadelphia, PA
dc.descriptionKolda, T.G., Lewis, R.M., Torczon, V., Optimization by direct search: new perspectives on some classical and modern methods (2003) SIAM Rev., 45, pp. 385-482
dc.descriptionLa Cruz, W., Martínez, J.M., Raydan, M., Spectral residual method without gradient information for solving large-scale nonlinear systems of equations (2006) Math. Comput., 75, pp. 1449-1466
dc.descriptionLi, D.H., Fukushima, M., A derivative-free line search and global convergence of Broyden-like method for nonlinear equations (2000) Opt. Methods Software, 13, pp. 181-201
dc.descriptionLucidi, S., Sciandrone, M., On the global convergence of derivative-free methods for unconstrained optimization (2002) SIAM J. Opt., 13, pp. 97-116
dc.descriptionMohammadi, B., Pironneau, O., (2001) Applied Shape Optimization for Fluids, , Clarendon Press, Oxford
dc.descriptionMoré, J.J., Garbow, B.S., Hillstrom, K.E., Testing unconstrained optimization software (1981) ACM Trans. Math. Software, 7, pp. 17-41
dc.descriptionPowell, M.J.D., Direct search algorithms for optimization calculations (1998) Acta Numer., 7, pp. 287-336
dc.descriptionPowell, M.J.D., On trust region methods for unconstrained minimization without derivatives (2003) Math. Progamming, 97, pp. 605-623
dc.descriptionPowell, M.J.D., On the use of quadratic models in unconstrained minimization without derivatives (2004) Opt. Methods Software, 19, pp. 399-411
dc.descriptionRaydan, M., The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem (1997) SIAM J. Opt., 7, pp. 26-33
dc.languageen
dc.publisher
dc.relationJournal of Computational and Applied Mathematics
dc.rightsfechado
dc.sourceScopus
dc.titleA Derivative-free Nonmonotone Line-search Technique For Unconstrained Optimization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución