dc.creatorAlvarez V.H.
dc.creatorAznar M.
dc.date2008
dc.date2015-06-30T19:31:18Z
dc.date2015-11-26T14:45:13Z
dc.date2015-06-30T19:31:18Z
dc.date2015-11-26T14:45:13Z
dc.date.accessioned2018-03-28T21:54:24Z
dc.date.available2018-03-28T21:54:24Z
dc.identifier
dc.identifierJournal Of The Chinese Institute Of Chemical Engineers. , v. 39, n. 4, p. 353 - 360, 2008.
dc.identifier3681653
dc.identifier10.1016/j.jcice.2008.02.007
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-48849104281&partnerID=40&md5=15f4c6c0d359e98c2025415cdf23b611
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106585
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106585
dc.identifier2-s2.0-48849104281
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252417
dc.descriptionVapor-liquid equilibrium (VLE) data from literature for binary systems involving several ionic liquids were correlated. The Peng-Robinson equation of state, coupled with the van der Waals and Wong-Sandler mixing rules, was used as the thermodynamic model to evaluate the fugacity coefficients. The UNIQUAC and NRTL models were used to calculate the excess Gibbs free energy in the Wong-Sandler mixing rule. A molecular modeling strategy using the software ChemOffice was used to calculate the volume and surface area parameters of ionic liquids for UNIQUAC, while the binary interaction energy parameters for UNIQUAC and NRTL models, as well as the binary interaction parameter of the van der Waals and Wong-Sandler mixing rules were estimated through a method based on the genetic algorithm. The results show that, as expected, the Wong-Sandler mixing rules represented better the data, with both activity coefficient models showing high accuracy. However, in one case, NRTL predicted an erroneous azeotropic condition, while UNIQUAC was able to correlate the data without this error. © 2008 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
dc.description39
dc.description4
dc.description353
dc.description360
dc.descriptionAbrams, D.S., Prausnitz, J.M., Statistical Thermodynamics of Liquid-Mixtures - New Expression for Excess Gibbs Energy of Partly or Completely Miscible Systems (1975) AIChE J, 21, p. 116
dc.descriptionAllinger, N.L., Conformational-Analysis. 130. MM2 - Hydrocarbon Force-Field Utilizing V1 and V2 Torsional Terms (1977) J. Am. Chem. Soc, 99, p. 8127
dc.descriptionAlvarez, V.H., Aznar, M., Parameter Estimation for VLE Calculations by Global Minimization through Genetic Algorithm (2006) XVI Brazilian Congress of Chemical Engineering, Santos-SP
dc.descriptionBanerjee, T., Singh, M.K., Sahoo, R.K., Khanna, A., Volume, Surface and UNIQUAC Interaction Parameters for Imidazolium-Based Ionic Liquids via Polarizable Continuum Model (2005) Fluid Phase Equilib, 234, p. 64
dc.descriptionBlanchard, L.A., Gu, Z., Brennecke, J.F., High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems (2001) J. Phys. Chem. B, 105, p. 2437
dc.descriptionBlanchard, L.A., Brennecke, J.F., Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide (2001) Ind. Eng. Chem. Res, 40, p. 287
dc.descriptionBondi, A., van der Waals Volumes and Radii (1964) J. Phys. Chem, 68, p. 441
dc.descriptionBrelvi, S.W., Simple Correlations for UNIQUAC Structure Parameters (1982) Ind. Eng. Chem. Process Des. Dev, 21, p. 367
dc.descriptionBrennecke, J., Maginn, E., Ionic Liquids: Innovative Fluids for Chemical Processing (2001) AIChE J, 47, p. 2384
dc.descriptionCarper, W.R., Meng, Z., Dölle, A., (2002) Quantum Mechanical Methods for Structure Elucidation, , P. Wasserscheid and T. Welton Eds, Wiley-VCH, New York, U.S.A
dc.description(2003) ChemOffice 6.0 Trial, , http://www.cambridgesoft.com, Version
dc.descriptionConnolly, M.L., Analytical Molecular-Surface Calculation (1983) J. Appl. Crystallogr, 16, p. 548
dc.descriptionConnolly, M.L., Computation of Molecular Volume (1985) J. Am. Chem. Soc, 107, p. 1118
dc.descriptionDomanska, U., Mazurowska, L., Solubility of 1,3-Dialkylimidazolium Chloride or Hexafluorophosphate or Methylsulfonate in Organic Solvents: Effect of the Anions on Solubility (2004) Fluid Phase Equilib, 221, p. 73
dc.description(2000) The DIPPR Information and Data Evaluation Manager, , Diadem Public 1.2
dc.descriptionHolland, J.H., (1985) Adaptation in Natural and Artificial Systems, , University of Michigan, Ann Arbor, MI, U.S.A
dc.descriptionHuddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D., Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation (2001) Green Chemistry, 3, p. 156
dc.descriptionKato, R., Krummen, M., Gmehling, J., Measurement and Correlation of Vapor-Liquid Equilibria and Excess Enthalpies of Binary Systems Containing Ionic Liquids and Hydrocarbons (2004) Fluid Phase Equilib, 224, p. 47
dc.descriptionMiertus, S., Scrocco, E., Tomasi, J., Electrostatic Interaction of a Solute with a Continuum - A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects (1981) Chem. Phys, 55, p. 117
dc.descriptionMitchell, M., An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, U.S.A (1998)Peng, D.Y., Robinson, D.B., A New Two-Constant Equation of State (1976) Ind. Eng. Chem. Fund, 15, p. 59
dc.descriptionRenon, H., Prausnitz, J.M., Local Compositions in Thermodynamics Excess Functions for Liquid Mixtures (1998) AIChE J, 14, p. 135
dc.descriptionSeddon, K.R., Ionic Liquids for Clean Technology (1997) J. Chem. Technol. Biotechnol, 68, p. 351
dc.descriptionShariati, A., Peters, C.J., High-Pressure Phase Behavior of Systems with Ionic Liquids: Measurements and Modeling of the Binary System Fluoroform + 1-Ethyl-3-methylimidazolium Hexafluorophosphate (2003) J. Supercrit. Fluids, 25, p. 109
dc.descriptionShariati, A., Peters, C.J., High-Pressure Phase Behavior of Systems with Ionic Liquids. Part II. The Binary System Carbon Dioxide + 1-Ethyl-3-methylimidazolium Hexafluorophosphate (2004) J. Supercrit. Fluids, 29, p. 43
dc.descriptionShariati, A., Peters, C.J., High-Pressure Phase Behavior of Systems with Ionic Liquids. Part III. The Binary System Carbon Dioxide + 1-Hexyl-3-methylimidazolium Hexafluorophosphate (2004) J. Supercrit. Fluids, 30, p. 139
dc.descriptionTester, J., Modell, M., (2000) Thermodynamics and Its Applications, , Prentice-Hall, Upper Saddle River, NY, U.S.A
dc.descriptionValderrama, J.O., Alvarez, V.H., Phase Equilibrium in Supercritical CO2 Mixtures Using a Modified Kwak-Mansoori Mixing Rule (2004) AIChE J, 50, p. 480
dc.descriptionWelton, T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis (1999) Chem Rev, 99, p. 2071
dc.descriptionWong, D.S., Sandler, I., A Theoretically Correct Mixing Rule for Cubic Equations of State (1992) AIChE J, 38, p. 671
dc.languageen
dc.publisher
dc.relationJournal of the Chinese Institute of Chemical Engineers
dc.rightsfechado
dc.sourceScopus
dc.titleThermodynamic Modeling Of Vapor-liquid Equilibrium Of Binary Systems Ionic Liquid + Supercritical {co2 Or Chf3} And Ionic Liquid + Hydrocarbons Using Peng-robinson Equation Of State
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución