dc.creator | Farinella N.V. | |
dc.creator | Matos G.D. | |
dc.creator | Lehmann E.L. | |
dc.creator | Arruda M.A.Z. | |
dc.date | 2008 | |
dc.date | 2015-06-30T19:30:43Z | |
dc.date | 2015-11-26T14:45:10Z | |
dc.date | 2015-06-30T19:30:43Z | |
dc.date | 2015-11-26T14:45:10Z | |
dc.date.accessioned | 2018-03-28T21:54:19Z | |
dc.date.available | 2018-03-28T21:54:19Z | |
dc.identifier | | |
dc.identifier | Journal Of Hazardous Materials. , v. 154, n. 1-3, p. 1007 - 1012, 2008. | |
dc.identifier | 3043894 | |
dc.identifier | 10.1016/j.jhazmat.2007.11.005 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-43049115777&partnerID=40&md5=bc1ac8e02c1f9e49023318f8484c0975 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/106545 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/106545 | |
dc.identifier | 2-s2.0-43049115777 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1252395 | |
dc.description | This work investigated the utilization of grape bagasse as an alternative natural adsorbent to remove Cd(II) and Pb(II) ions from laboratory effluent. X-ray diffractometry, Fourier transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, thermogravimetric analyses, surface analysis, porosity and porous size were used for characterization of the material. Batch experiments were carried out to evaluate the adsorption capacity of the material. Parameters such as adsorption pH and contact time were optimized for the maximum accumulation onto the solid surface. The pH values found were 7 and 3 for Cd(II) and Pb(II), respectively, and contact time was 5 min for both metals. Adsorption capacity for metals were calculated from adsorption isotherms by applying the Langmüir model and found to be 0.774 and 0.428 mmol g-1 for Cd(II) and Pb(II), respectively. The competition between metals for the same adsorption sites on grape bagasse was also evaluated, showing an increasing affinity for Pb(II) over Cd(II) when only these metals are present. The potential of this material was demonstrated by efficient metal removal from laboratory effluent using a glass column. The results indicate that the referred material could be employed as adsorbent for effluent treatment, especially due to its easy acquisition and low cost as well as the fast adsorption involved. © 2007 Elsevier B.V. All rights reserved. | |
dc.description | 154 | |
dc.description | 1-3 | |
dc.description | 1007 | |
dc.description | 1012 | |
dc.description | Arruda, M.A.Z., Tarley, C.R.T., Matos, G.D., Natural adsorbent materials for effluent treatment (2005) Trends in Water Pollution Research, pp. 137-165. , Livingston J.V. (Ed), Nova Science Publishers, New York | |
dc.description | Pino, G.H., Mesquita, L.M.S., Torem, M.L., Pinto, G.A.S., Biosorption of cadmium by green coconut shell powder (2006) Miner. Eng., 19, pp. 380-387 | |
dc.description | Lee, S.H., Jung, C.H., Chung, H., Lee, M.Y., Yang, J.W., Removal of heavy metals from aqueous solution by apple residues (1998) Process Biochem., 33, pp. 205-211 | |
dc.description | Mohan, D., Chander, S., Removal and recovery of metal ions from acid mine drainage using lignite-a low cost sorbent (2006) J. Hazard. Mater., B137, pp. 1545-1553 | |
dc.description | Conrad, K., Hansen, H.C.B., Sorption of zinc and lead on coir (2007) Bioresour. Technol., 98 (1), pp. 89-97 | |
dc.description | Bayramoglu, G., Tuzun, I., Çelik, G., Yilmaz, M., Arica, M.Y., Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads (2006) Int. J. Miner. Process., 81, pp. 35-43 | |
dc.description | Gupta, V.K., Ali, I., Removal of lead and chromium from wasterwater using bagasse fly ash-a sugar industry waste (2004) J. Colloid Interf. Sci., 271, pp. 321-328 | |
dc.description | Gupta, V.K., Singh, P., Rahman, N., Adsorption behavior of Hg(II), Pb(II) and Cd(II) from aqueous solution on duolite C-433: a synthetic resin (2004) J. Colloid Interf. Sci., 275 (2), pp. 398-402 | |
dc.description | Gupta, V.K., Jain, C.K., Ali, I., Sharma, M., Saini, V.K., Removal of cadmium and nickel from wasterwater using bagasse fly ash-a sugar industry waste (2003) Water Res., 37 (16), pp. 4038-4044 | |
dc.description | Gupta, V.K., Sharma, S., Removal of cadmium and zinc from aqueous solution using red mud (2002) Environ. Sci. Technol., 36 (16), pp. 3612-3617 | |
dc.description | Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D., A review of potentially low-cost sorbents for heavy metals (1999) Water Res., 33, pp. 2469-2479 | |
dc.description | Farinella, N.V., Matos, G.D., Arruda, M.A.Z., Grape bagasse as a potential biosorbent of metals in effluent treatments (2007) Bioresour. Technol., 98 (10), pp. 1940-1946 | |
dc.description | Villaescusa, I., Fiol, N., Martinez, M., Miralles, N., Poch, J., Serarols, J., Removal of copper and nickel ions from aqueous solutions by grape stalks wastes (2004) Water Res., 38, pp. 992-1002 | |
dc.description | EPA, 40 Code of Federal Regulations, Chapter I, Part 437, Subpart A: Metals Treatment and Recovery, sec. 437.11, 2000Pasquali, C.E.L., Herrera, H., Pyrolysis of lignin and IR analysis of residues (1997) Thermochim. Acta, 293, pp. 39-46 | |
dc.description | Murillo, J.M., Marañón, T., Cabrera, F., López, R., Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill (1999) Sci. Tot. Environ., 242, pp. 81-292 | |
dc.description | Pereira, M.G., Arruda, M.A.Z., Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption (2003) J. Braz. Chem. Soc., 14, pp. 39-47 | |
dc.description | Villaescusa, I., Martinez, M., Miralles, N., Heavy metal uptake from aqueous solution by cork and yohimbe bark wastes (2000) J. Chem. Technol. Biotechnol., 75, pp. 812-816 | |
dc.description | Langmüir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc., 40, pp. 1361-1403 | |
dc.description | Matos, G.D., Arruda, M.A.Z., Vermicompost as natural adsorbent for removing metal ions from laboratory effluents (2003) Process Biochem., 39, pp. 81-88 | |
dc.description | Tuzun, I., Bayramoglu, G., Yalçin, E., Başaran, G., Çelik, G., Arica, M.Y., Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardti (2005) J. Environ. Manage., 77, pp. 85-92 | |
dc.description | Yan, G.Y., Viraraghavan, T., Heavy metal removal in a biosorption column by immobilized M. rouxii biomass (2001) Bioresour. Technol., 78, pp. 243-249 | |
dc.description | Kapoor, A., Viraraghavan, T., Cullimore, D.R., Removal of heavy metals using the fungus Aspergilus niger (1999) Bioresour. Technol., 70, pp. 95-104 | |
dc.description | EPA's web site, http://www.epa.gov, section: Water, subsection: Safewater, item: Drinking Water Contaminants (accessed on October 26, 2007) | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Hazardous Materials | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Grape Bagasse As An Alternative Natural Adsorbent Of Cadmium And Lead For Effluent Treatment | |
dc.type | Artículos de revistas | |