dc.creatorDe Souza A.P.
dc.creatorGaspar M.
dc.creatorDa Silva E.A.
dc.creatorUlian E.C.
dc.creatorWaclawovsky A.J.
dc.creatorNishiyama Jr. M.Y.
dc.creatorDos Santos R.V.
dc.creatorTeixeira M.M.
dc.creatorSouza G.M.
dc.creatorBuckeridge M.S.
dc.date2008
dc.date2015-06-30T19:29:07Z
dc.date2015-11-26T14:44:51Z
dc.date2015-06-30T19:29:07Z
dc.date2015-11-26T14:44:51Z
dc.date.accessioned2018-03-28T21:53:53Z
dc.date.available2018-03-28T21:53:53Z
dc.identifier
dc.identifierPlant, Cell And Environment. , v. 31, n. 8, p. 1116 - 1127, 2008.
dc.identifier1407791
dc.identifier10.1111/j.1365-3040.2008.01822.x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-46949083348&partnerID=40&md5=c6fa93d78c1a7c1ad283bff917fb7b19
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106428
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106428
dc.identifier2-s2.0-46949083348
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252285
dc.descriptionBecause of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO2]. The effects of increased [CO2] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (∼370 ppm) and elevated (∼720 ppm) [CO2] during 50 weeks in open-top chambers. The plants grown under elevated CO2 showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO2]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO2. The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO2], and that this might be related, as previously observed for maize and sorghum, to transient drought stress. © 2008 The Authors.
dc.description31
dc.description8
dc.description1116
dc.description1127
dc.descriptionAidar, M.P.M., Martinez, C.A., Costa, A.C., Costa, P.M.F., Dietrich, S.M.C., Buckeridge, M.S., Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá. Hymenaea courbaril L. (Leguminosae, Caesalpinioideae) (2002) Biota Neotropica, 2. , http://www.biotaneotropica.org.br/v2n1/en/abstract?article+BN01602012002
dc.descriptionAinsworth, E.A., Long, S.P., What have we learned from 15 years of free air-CO2 enrichment (FACE)? a meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 (2005) New Phytologist, 165, pp. 351-372
dc.descriptionAinsworth, E.A., Rogers, A., The response of photosynthesis and stomatal conductance to rising [cO2]: Mechanisms and environmental interactions (2007) Plant, Cell & Environment, 30, pp. 258-270
dc.descriptionAinsworth, E.A., Rogers, A., Vodkin, L.O., Walter, A., Schurr, U., The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves (2006) Plant Physiology, 142, pp. 135-147
dc.descriptionArp, W.J., Effects of source-sink relations on photosynthetic acclimation to elevated CO2 (1991) Plant, Cell & Environment, 14, pp. 869-875
dc.descriptionBlaschke, L., Legrand, M., Mai, C., Polle, A., Lignification and structural biomass production in tobacco with suppressed caffeic/5-hydroxy ferulic acid-O-methyl transferase activity under ambient and elevated CO2 concentrations (2004) Physiologia Plantarum, 121, pp. 75-83
dc.descriptionBowes, G., Facing the inevitable: Plants and increasing atmospheric CO2 (1993) Annual Review of Plant Physiology and Plant Molecular Biology, 44, pp. 309-332
dc.descriptionCarpita, N.C., Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali (1984) Phytochemistry, 23, pp. 1089-1093
dc.descriptionCousins, A.B., Bloom, A.J., Influence of elevated CO2 and nitrogen nutrition on photosynthesis and nitrate photo-assimilation in maize (Zea mays L.) (2003) Plant, Cell & Environment, 26, pp. 1526-1530
dc.descriptionCousins, A.B., Adam, N.R., Wall, G.W., Al, E., Reduced photorespiration and increased energy-use efficiency in young CO2-enriched sorghum leaves (2001) New Phytologist, 150, pp. 275-284
dc.descriptionCousins, A.B., Adam, N.R., Wall, G.W., Kimball, B.A., Pinter Jr., P.J., Ottman, M.J., Leavitt, S.W., Weber, A.N., Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE) (2003) Journal of Experimental Botany, 54, pp. 1969-1975
dc.descriptionDoorembos, J., Kassam, A.H., (1979) Efectos del Agua Sobre El Rendimiento de Los Cultivos., p. 212. , FAO, Rome, pp
dc.descriptionDruart, N., Rodríguez-Buey, M., Barron-Gafford, G., Sjödin, A., Bhalerao, R., Hurry, V., Molecular targets of elevated [cO2] in leaves and stem of Populus deltoides: Implications for future tree growth and carbon sequestration (2006) Functional Plant Biology, 33, pp. 121-131
dc.descriptionFerris, R., Sabatti, M., Miglietta, F., Miels, R.F., Taylor, G., Leaf area is stimulated in Populus by free air CO2 enrichmen through cell expansion and production (2001) Plant, Cell & Environment, 24, pp. 305-315
dc.descriptionFoyer, H.C., The basis for source-sink interaction in leaves (1987) Plant Physiology and Biochemistry, 25, pp. 649-657
dc.descriptionGascho, G.J., Shih, S.F., Sugarcane (1983) Crop Water Relations, p. 479. , In. eds. I.D. Teare. M.M. Peet. pp.-448. Wiley-Interscience, New York
dc.descriptionGhannoum, O., Von Caemmerer, S., Ziska, L.H., Conroy, J.P., The growth response of C4 plants to rising atmospheric CO 2 partial pressure: A reassessment (2000) Plant, Cell & Environment, 23, pp. 931-942
dc.descriptionGoldenberg, J., Ethanol for a sustainable energy future (2007) Science, 315, pp. 808-810
dc.descriptionGorshokova, T.A., Wyatt, S.E., Salnikov, V.V., Gibeaut, D.M., Ibragimov, M.R., Lozovaya, V.V., Carpita, N.C., Cell-wall polysaccharides of developing flax plants (1996) Plant Physiology, 110, pp. 721-729
dc.descriptionIskandar, H.M., Simpson, R.S., Casu, R.E., Bonnett, G.D., MacLean, D.J., Manners, J.M., Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane (2004) Plant Molecular Biology Reporter, 22, pp. 325-337
dc.descriptionKim, S.H., Sicher, R.C., Bae, H., Gitz, D.C., Bakers, J.T., Timlin, D.J., Reddy, V.R., Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment (2006) Global Change Biology, 12, pp. 588-600
dc.descriptionKoide, T., Salem-Izaac, S.M., Gomes, S.L., Vencio, R.Z.N., SpotWhatR: A user-friendly microarray data analysis system (2006) Genetic Molecular Research, 5, pp. 93-107
dc.descriptionKörner, C., Asshoff, R., Bignucolo, O., Hattenscwiler, S., Keel, S.G., Pelàez-Riedl, S., Pepin, S., Zotz, G., Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2 (2005) Science, 309, pp. 1360-1362
dc.descriptionLeakey, A.D.B., Uribelarrea, M., Ainsworth, E.A., Naidu, S.L., Rogers, A., Ort, D.R., Long, S.P., Photosynthesis, productivity and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought (2006) Plant Physiology, 140, pp. 779-790
dc.descriptionLi, J., Li, X., Su, H., Chen, H., Galbraith, D.W., A framework of integrating gene relations from heterogeneous data sources: An experiment on Arabidopsis thaliana (2006) Bioinformatics, 22, pp. 2037-2043
dc.descriptionLivak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method (2001) Methods, 25, pp. 402-408
dc.descriptionLong, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., Rising atmospheric carbon dioxide: Plants FACE the future (2004) Annual Reviews of Plant Biology, 55, pp. 591-628
dc.descriptionMaroco, J.P., Edwards, G.E., Ku, M.S.B., Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide (1999) Planta, 210, pp. 115-125
dc.descriptionMiyazaki, S., Fredricksen, M., Hollis, K.C., Poroyko, V., Shepley, D., Galbraith, D.W., Long, S.P., Bohnert, H.J., Transcript expression profiles of Arabdopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3 (2004) Field Crops Research, 90, pp. 47-59
dc.descriptionMoore, B.D., Cheng, S.H., Rice, J., Seemann, J.R., Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2 (1998) Plant, Cell & Environment, 21, pp. 905-915
dc.descriptionNowak, R.S., Ellsworth, D.S., Smith, S.D., Functional responses of plants to elevated atmospheric CO2- do photosynthetic and productivity data from FACE experiments support early predictions? (2004) New Phytologist, 162, pp. 253-280
dc.descriptionOttman, M.J., Kimball, B.A., Pinter, P.J., Wall, G.W., Vanderlip, R.L., Leavitt, S.W., Lamorte, R.L., Brooks, T.J., Elevated CO2 increases sorghum biomass under drought conditions (2001) New Phytologist, 150, pp. 261-273
dc.descriptionPapini-Terzi, F.S., Rocha, F.R., Vêncio, R.Z.N., Al, E., Transcription profiling of signal transduction-related genes in sugarcane tissues (2005) DNA Research, 12, pp. 27-38
dc.descriptionPearcy, R.W., Ehleringer, J., Comparative ecophysiology of C3 and C4 plants (1984) Plant, Cell & Environment, 7, pp. 1-13
dc.descriptionPritchard, S.G., Rogers, H.H., Prior, S.A., Peterson, C.M., Elevated CO2 and plant structure: A review (1999) Global Change Biology, 5, pp. 807-837
dc.descriptionUnderstanding and attributing climate change (2007) Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change., , Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. Miller H.L. (eds) Cambridge University Press, Cambridge and New York
dc.descriptionSouza, G.M., Simões, A.C.Q., Oliveira, K.C., Garay, H.M., Fiorini, L.C., Gomes, F.S., Nishiyama-Junior, M.Y., Silva, A.M., SUCAST: Prospecting signal transduction in sugarcane (2001) Genetics Molecular Biology, 24, pp. 25-34
dc.description(2007), http://www.portalunica.com.br, Sugar Cane Industry - UNICA. Available at: (accessed 18 September 2007)Tang, J., Chen, J., Chen, X., Response of 12 weedy species to elevated CO2 in low-phosphorus-availability soil (2006) Ecological Research, 21, pp. 664-670
dc.descriptionTaylor, G., Tricker, P.J., Zhang, F.Z., Alston, V.J., Miglietta, F., Kuzminsky, E., Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar (2003) Plant Physiology, 131, pp. 177-185
dc.descriptionTaylor, G., Street, N.R., Tricker, P.J., Sjödin, A., Graham, L., Skogström, O., Calfapietra, C., Janson, S., Transcriptome of Populus in elevated CO2 (2005) New Phytologist, 167, pp. 143-154
dc.descriptionVettore, A.L., Da Silva, F.R., Kemper, E.L., Souza, G.M., Arruda, P., Analysis and functional annotation of expressed sequence tag collection for tropical crop sugarcane (2003) Genome Research, 13, pp. 2725-2735
dc.descriptionVon Caemmerer, S., (2000) Biochemical Models of Leaf Photosynthesis., , CSIRO Publishing, Collingwood
dc.descriptionVu, J.C.V., Allen Jr., L.H., Gesch, R.W., Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2 (2006) Plant Science, 171, pp. 123-131
dc.descriptionWand, S.J.E., Midgley, G.F., Jones, M.H., Curtis, P.S., Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions (1999) Global Change Biology, 5, pp. 723-741
dc.descriptionWatling, J.R., Press, M.C., Quick, W.P., Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum (2000) Plant Physiology, 123, pp. 1143-1152
dc.descriptionWu, Y., Cosgrove, D.J., Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins (2000) Journal of Experimental Botany, 51, pp. 1543-1553
dc.descriptionYang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., Speed, T.P., Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation (2002) Nucleic Acids Research, 30, pp. e15
dc.descriptionZiska, L.H., Bunce, J.A., Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds (1997) Photosynthesis Research, 54, pp. 199-208
dc.descriptionZiska, L.H., Sicher, R.C., Bunce, J.A., The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates (1999) Physiologia Plantarum, 105, pp. 74-80
dc.languageen
dc.publisher
dc.relationPlant, Cell and Environment
dc.rightsfechado
dc.sourceScopus
dc.titleElevated Co2 Increases Photosynthesis, Biomass And Productivity, And Modifies Gene Expression In Sugarcane
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución