dc.creator | De Souza A.P. | |
dc.creator | Gaspar M. | |
dc.creator | Da Silva E.A. | |
dc.creator | Ulian E.C. | |
dc.creator | Waclawovsky A.J. | |
dc.creator | Nishiyama Jr. M.Y. | |
dc.creator | Dos Santos R.V. | |
dc.creator | Teixeira M.M. | |
dc.creator | Souza G.M. | |
dc.creator | Buckeridge M.S. | |
dc.date | 2008 | |
dc.date | 2015-06-30T19:29:07Z | |
dc.date | 2015-11-26T14:44:51Z | |
dc.date | 2015-06-30T19:29:07Z | |
dc.date | 2015-11-26T14:44:51Z | |
dc.date.accessioned | 2018-03-28T21:53:53Z | |
dc.date.available | 2018-03-28T21:53:53Z | |
dc.identifier | | |
dc.identifier | Plant, Cell And Environment. , v. 31, n. 8, p. 1116 - 1127, 2008. | |
dc.identifier | 1407791 | |
dc.identifier | 10.1111/j.1365-3040.2008.01822.x | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-46949083348&partnerID=40&md5=c6fa93d78c1a7c1ad283bff917fb7b19 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/106428 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/106428 | |
dc.identifier | 2-s2.0-46949083348 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1252285 | |
dc.description | Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO2]. The effects of increased [CO2] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (∼370 ppm) and elevated (∼720 ppm) [CO2] during 50 weeks in open-top chambers. The plants grown under elevated CO2 showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO2]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO2. The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO2], and that this might be related, as previously observed for maize and sorghum, to transient drought stress. © 2008 The Authors. | |
dc.description | 31 | |
dc.description | 8 | |
dc.description | 1116 | |
dc.description | 1127 | |
dc.description | Aidar, M.P.M., Martinez, C.A., Costa, A.C., Costa, P.M.F., Dietrich, S.M.C., Buckeridge, M.S., Effect of atmospheric CO2 enrichment on the establishment of seedlings of jatobá. Hymenaea courbaril L. (Leguminosae, Caesalpinioideae) (2002) Biota Neotropica, 2. , http://www.biotaneotropica.org.br/v2n1/en/abstract?article+BN01602012002 | |
dc.description | Ainsworth, E.A., Long, S.P., What have we learned from 15 years of free air-CO2 enrichment (FACE)? a meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 (2005) New Phytologist, 165, pp. 351-372 | |
dc.description | Ainsworth, E.A., Rogers, A., The response of photosynthesis and stomatal conductance to rising [cO2]: Mechanisms and environmental interactions (2007) Plant, Cell & Environment, 30, pp. 258-270 | |
dc.description | Ainsworth, E.A., Rogers, A., Vodkin, L.O., Walter, A., Schurr, U., The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves (2006) Plant Physiology, 142, pp. 135-147 | |
dc.description | Arp, W.J., Effects of source-sink relations on photosynthetic acclimation to elevated CO2 (1991) Plant, Cell & Environment, 14, pp. 869-875 | |
dc.description | Blaschke, L., Legrand, M., Mai, C., Polle, A., Lignification and structural biomass production in tobacco with suppressed caffeic/5-hydroxy ferulic acid-O-methyl transferase activity under ambient and elevated CO2 concentrations (2004) Physiologia Plantarum, 121, pp. 75-83 | |
dc.description | Bowes, G., Facing the inevitable: Plants and increasing atmospheric CO2 (1993) Annual Review of Plant Physiology and Plant Molecular Biology, 44, pp. 309-332 | |
dc.description | Carpita, N.C., Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali (1984) Phytochemistry, 23, pp. 1089-1093 | |
dc.description | Cousins, A.B., Bloom, A.J., Influence of elevated CO2 and nitrogen nutrition on photosynthesis and nitrate photo-assimilation in maize (Zea mays L.) (2003) Plant, Cell & Environment, 26, pp. 1526-1530 | |
dc.description | Cousins, A.B., Adam, N.R., Wall, G.W., Al, E., Reduced photorespiration and increased energy-use efficiency in young CO2-enriched sorghum leaves (2001) New Phytologist, 150, pp. 275-284 | |
dc.description | Cousins, A.B., Adam, N.R., Wall, G.W., Kimball, B.A., Pinter Jr., P.J., Ottman, M.J., Leavitt, S.W., Weber, A.N., Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE) (2003) Journal of Experimental Botany, 54, pp. 1969-1975 | |
dc.description | Doorembos, J., Kassam, A.H., (1979) Efectos del Agua Sobre El Rendimiento de Los Cultivos., p. 212. , FAO, Rome, pp | |
dc.description | Druart, N., Rodríguez-Buey, M., Barron-Gafford, G., Sjödin, A., Bhalerao, R., Hurry, V., Molecular targets of elevated [cO2] in leaves and stem of Populus deltoides: Implications for future tree growth and carbon sequestration (2006) Functional Plant Biology, 33, pp. 121-131 | |
dc.description | Ferris, R., Sabatti, M., Miglietta, F., Miels, R.F., Taylor, G., Leaf area is stimulated in Populus by free air CO2 enrichmen through cell expansion and production (2001) Plant, Cell & Environment, 24, pp. 305-315 | |
dc.description | Foyer, H.C., The basis for source-sink interaction in leaves (1987) Plant Physiology and Biochemistry, 25, pp. 649-657 | |
dc.description | Gascho, G.J., Shih, S.F., Sugarcane (1983) Crop Water Relations, p. 479. , In. eds. I.D. Teare. M.M. Peet. pp.-448. Wiley-Interscience, New York | |
dc.description | Ghannoum, O., Von Caemmerer, S., Ziska, L.H., Conroy, J.P., The growth response of C4 plants to rising atmospheric CO 2 partial pressure: A reassessment (2000) Plant, Cell & Environment, 23, pp. 931-942 | |
dc.description | Goldenberg, J., Ethanol for a sustainable energy future (2007) Science, 315, pp. 808-810 | |
dc.description | Gorshokova, T.A., Wyatt, S.E., Salnikov, V.V., Gibeaut, D.M., Ibragimov, M.R., Lozovaya, V.V., Carpita, N.C., Cell-wall polysaccharides of developing flax plants (1996) Plant Physiology, 110, pp. 721-729 | |
dc.description | Iskandar, H.M., Simpson, R.S., Casu, R.E., Bonnett, G.D., MacLean, D.J., Manners, J.M., Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane (2004) Plant Molecular Biology Reporter, 22, pp. 325-337 | |
dc.description | Kim, S.H., Sicher, R.C., Bae, H., Gitz, D.C., Bakers, J.T., Timlin, D.J., Reddy, V.R., Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment (2006) Global Change Biology, 12, pp. 588-600 | |
dc.description | Koide, T., Salem-Izaac, S.M., Gomes, S.L., Vencio, R.Z.N., SpotWhatR: A user-friendly microarray data analysis system (2006) Genetic Molecular Research, 5, pp. 93-107 | |
dc.description | Körner, C., Asshoff, R., Bignucolo, O., Hattenscwiler, S., Keel, S.G., Pelàez-Riedl, S., Pepin, S., Zotz, G., Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2 (2005) Science, 309, pp. 1360-1362 | |
dc.description | Leakey, A.D.B., Uribelarrea, M., Ainsworth, E.A., Naidu, S.L., Rogers, A., Ort, D.R., Long, S.P., Photosynthesis, productivity and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought (2006) Plant Physiology, 140, pp. 779-790 | |
dc.description | Li, J., Li, X., Su, H., Chen, H., Galbraith, D.W., A framework of integrating gene relations from heterogeneous data sources: An experiment on Arabidopsis thaliana (2006) Bioinformatics, 22, pp. 2037-2043 | |
dc.description | Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method (2001) Methods, 25, pp. 402-408 | |
dc.description | Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., Rising atmospheric carbon dioxide: Plants FACE the future (2004) Annual Reviews of Plant Biology, 55, pp. 591-628 | |
dc.description | Maroco, J.P., Edwards, G.E., Ku, M.S.B., Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide (1999) Planta, 210, pp. 115-125 | |
dc.description | Miyazaki, S., Fredricksen, M., Hollis, K.C., Poroyko, V., Shepley, D., Galbraith, D.W., Long, S.P., Bohnert, H.J., Transcript expression profiles of Arabdopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3 (2004) Field Crops Research, 90, pp. 47-59 | |
dc.description | Moore, B.D., Cheng, S.H., Rice, J., Seemann, J.R., Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2 (1998) Plant, Cell & Environment, 21, pp. 905-915 | |
dc.description | Nowak, R.S., Ellsworth, D.S., Smith, S.D., Functional responses of plants to elevated atmospheric CO2- do photosynthetic and productivity data from FACE experiments support early predictions? (2004) New Phytologist, 162, pp. 253-280 | |
dc.description | Ottman, M.J., Kimball, B.A., Pinter, P.J., Wall, G.W., Vanderlip, R.L., Leavitt, S.W., Lamorte, R.L., Brooks, T.J., Elevated CO2 increases sorghum biomass under drought conditions (2001) New Phytologist, 150, pp. 261-273 | |
dc.description | Papini-Terzi, F.S., Rocha, F.R., Vêncio, R.Z.N., Al, E., Transcription profiling of signal transduction-related genes in sugarcane tissues (2005) DNA Research, 12, pp. 27-38 | |
dc.description | Pearcy, R.W., Ehleringer, J., Comparative ecophysiology of C3 and C4 plants (1984) Plant, Cell & Environment, 7, pp. 1-13 | |
dc.description | Pritchard, S.G., Rogers, H.H., Prior, S.A., Peterson, C.M., Elevated CO2 and plant structure: A review (1999) Global Change Biology, 5, pp. 807-837 | |
dc.description | Understanding and attributing climate change (2007) Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change., , Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. Miller H.L. (eds) Cambridge University Press, Cambridge and New York | |
dc.description | Souza, G.M., Simões, A.C.Q., Oliveira, K.C., Garay, H.M., Fiorini, L.C., Gomes, F.S., Nishiyama-Junior, M.Y., Silva, A.M., SUCAST: Prospecting signal transduction in sugarcane (2001) Genetics Molecular Biology, 24, pp. 25-34 | |
dc.description | (2007), http://www.portalunica.com.br, Sugar Cane Industry - UNICA. Available at: (accessed 18 September 2007)Tang, J., Chen, J., Chen, X., Response of 12 weedy species to elevated CO2 in low-phosphorus-availability soil (2006) Ecological Research, 21, pp. 664-670 | |
dc.description | Taylor, G., Tricker, P.J., Zhang, F.Z., Alston, V.J., Miglietta, F., Kuzminsky, E., Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar (2003) Plant Physiology, 131, pp. 177-185 | |
dc.description | Taylor, G., Street, N.R., Tricker, P.J., Sjödin, A., Graham, L., Skogström, O., Calfapietra, C., Janson, S., Transcriptome of Populus in elevated CO2 (2005) New Phytologist, 167, pp. 143-154 | |
dc.description | Vettore, A.L., Da Silva, F.R., Kemper, E.L., Souza, G.M., Arruda, P., Analysis and functional annotation of expressed sequence tag collection for tropical crop sugarcane (2003) Genome Research, 13, pp. 2725-2735 | |
dc.description | Von Caemmerer, S., (2000) Biochemical Models of Leaf Photosynthesis., , CSIRO Publishing, Collingwood | |
dc.description | Vu, J.C.V., Allen Jr., L.H., Gesch, R.W., Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2 (2006) Plant Science, 171, pp. 123-131 | |
dc.description | Wand, S.J.E., Midgley, G.F., Jones, M.H., Curtis, P.S., Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions (1999) Global Change Biology, 5, pp. 723-741 | |
dc.description | Watling, J.R., Press, M.C., Quick, W.P., Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum (2000) Plant Physiology, 123, pp. 1143-1152 | |
dc.description | Wu, Y., Cosgrove, D.J., Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins (2000) Journal of Experimental Botany, 51, pp. 1543-1553 | |
dc.description | Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., Speed, T.P., Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation (2002) Nucleic Acids Research, 30, pp. e15 | |
dc.description | Ziska, L.H., Bunce, J.A., Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds (1997) Photosynthesis Research, 54, pp. 199-208 | |
dc.description | Ziska, L.H., Sicher, R.C., Bunce, J.A., The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates (1999) Physiologia Plantarum, 105, pp. 74-80 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Plant, Cell and Environment | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Elevated Co2 Increases Photosynthesis, Biomass And Productivity, And Modifies Gene Expression In Sugarcane | |
dc.type | Artículos de revistas | |