dc.creatorLopes Filho M.C.
dc.creatorMazzucato A.L.
dc.creatorNussenzveig Lopes H.J.
dc.date2008
dc.date2015-06-30T19:29:21Z
dc.date2015-11-26T14:44:48Z
dc.date2015-06-30T19:29:21Z
dc.date2015-11-26T14:44:48Z
dc.date.accessioned2018-03-28T21:53:49Z
dc.date.available2018-03-28T21:53:49Z
dc.identifier
dc.identifierPhysica D: Nonlinear Phenomena. , v. 237, n. 10-12, p. 1324 - 1333, 2008.
dc.identifier1672789
dc.identifier10.1016/j.physd.2008.03.009
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-44649120782&partnerID=40&md5=2800febdb95e9beed60858cf724cb5df
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106442
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106442
dc.identifier2-s2.0-44649120782
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252267
dc.descriptionIn this article we consider circularly symmetric incompressible viscous flow in a disk. The boundary condition is no-slip with respect to a prescribed time-dependent rotation of the boundary about the center of the disk. We prove that, if the prescribed angular velocity of the boundary has finite total variation, then the Navier-Stokes solutions converge strongly in L2 to the corresponding stationary solution of the Euler equations when viscosity vanishes. Our approach is based on a semigroup treatment of the symmetry-reduced scalar equation. © 2008 Elsevier B.V. All rights reserved.
dc.description237
dc.description10-12
dc.description1324
dc.description1333
dc.descriptionK. Asano, Zero viscosity limit of incompressible Navier-Stokes equations I, II, unpublished preprints, 1988Bona, J., Wu, J., The zero-viscosity limit of the 2D Navier-Stokes equations (2002) Stud. Appl. Math., 109 (4), pp. 265-278
dc.descriptionClopeau, T., Mikelic, A., Robert, R., On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with friction-type boundary conditions (1998) Nonlinearity, 11, pp. 1625-1636
dc.descriptionFolland, G., (1999) Pure and Applied Mathematics (New York), , A Wiley-Interscience Publication, New York
dc.descriptionGrenier, E., Masmoudi, N., Ekman layers of rotating fluids, the case of well prepared initial data (1997) Comm. Partial Differential Equations, 22 (5-6), pp. 953-975
dc.descriptionHenry, D., (1981) Lecture Notes in Mathematics, 840. , Springer-Verlag, Berlin, New York
dc.descriptionIftimie, D., Planas, G., Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions (2006) Nonlinearity, 19, pp. 899-918
dc.descriptionKato, T., Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary (1984) Seminar on Nonlinear PDE, , Chern S.S. (Ed), MSRI, Berkeley
dc.descriptionKelliher, J., On Kato's conditions for vanishing viscosity (2007) Indiana Univ. Math. J., 56 (4), pp. 1711-1721
dc.descriptionJ. Kelliher, On the vanishing viscosity limit in a disk, preprint, 2007Lax, P.D., Functional analysis (2002) Pure and Applied Mathematics (New York), , Wiley-Interscience, New York
dc.descriptionM. Lopes Filho, A. Mazzucato, H. Nussenzveig Lopes, M. Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc. (in press)Lopes Filho, M., Nussenzveig Lopes, H., Planas, G., On the inviscid limit for two-dimensional incompressible flow with Navier friction condition (2005) SIAM J. Appl. Math., 36 (4), pp. 1130-1141
dc.descriptionLopes Filho, M., Nussenzveig Lopes, H., Zheng, Y., Convergence of the vanishing viscosity approximation for superpositions of confined eddies (1999) Comm. Math. Phys., 201 (2), pp. 291-304
dc.descriptionMasmoudi, N., The Euler limit of the Navier-Stokes equations and rotating fluids with boundary (1998) Arch. Ration. Mech. Anal., 142 (4), pp. 375-394
dc.descriptionMatsui, S., Example of zero viscosity limit for two-dimensional nonstationary Navier-Stokes flows with boundary (1994) Japan J. Indust. Appl. Math., 11 (1), pp. 155-170
dc.descriptionPazy, A., (1983) Applied Mathematical Sciences, 44. , Springer-Verlag, New York
dc.descriptionReed, M., Simon, B., Methods of modern mathematical physics. II (1975) Fourier Analysis, Self-Adjointness, , Academic Press, New York, London
dc.descriptionSammartino, M., Caflisch, R., Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space I, existence for Euler and Prandtl equations (1998) Comm. Math. Phys., 192 (2), pp. 433-461
dc.descriptionSammartino, M., Caflisch, R., Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space II, construction of the Navier-Stokes solution (1998) Comm. Math. Phys., 192 (2), pp. 463-491
dc.descriptionSchlichting, H., Gersten, K., (2000) Boundary Layer Theory. 8th edition, , Springer Verlag, Berlin
dc.descriptionTemam, R., Wang, X., On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity (1998) Annali della Scuola Norm. Sup. Pisa Serie IV XXV, pp. 807-828. , (Vol. dedicated to the memory of E. De Giorgi)
dc.descriptionTemam, R., Wang, X., Boundary layer associated with the incompressible Navier-Stokes equations: The non-characteristic boundary case (2002) J. Differential Equations, 179, pp. 647-686
dc.descriptionWang, X., A Kato type theorem on zero viscosity limit of Navier-Stokes flows (2001) Indiana Univ. Math. J., 50 (1), pp. 223-241
dc.languageen
dc.publisher
dc.relationPhysica D: Nonlinear Phenomena
dc.rightsfechado
dc.sourceScopus
dc.titleVanishing Viscosity Limit For Incompressible Flow Inside A Rotating Circle
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución