dc.creatorKoshlukov P.
dc.date2008
dc.date2015-06-30T19:29:54Z
dc.date2015-11-26T14:44:42Z
dc.date2015-06-30T19:29:54Z
dc.date2015-11-26T14:44:42Z
dc.date.accessioned2018-03-28T21:53:39Z
dc.date.available2018-03-28T21:53:39Z
dc.identifier
dc.identifierInternational Journal Of Algebra And Computation. , v. 18, n. 5, p. 825 - 836, 2008.
dc.identifier2181967
dc.identifier10.1142/S021819670800469X
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-50949098420&partnerID=40&md5=1c11c32b6d8ed7e308ac24a907450c38
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106479
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106479
dc.identifier2-s2.0-50949098420
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252229
dc.descriptionThe Lie algebra sl2(K) over a field K has a natural grading by 2, the cyclic group of order 2. We describe the graded polynomial identities for this grading when the base field is infinite and of characteristic different from 2. We exhibit a basis of these identities that consists of one polynomial. In order to obtain this basis we employ methods and results from Invariant theory. As a by-product we obtain finite bases of the graded identities for sl2(K) graded by other groups such as 2 × 2, and by the integers . © 2008 World Scientific Publishing Company.
dc.description18
dc.description5
dc.description825
dc.description836
dc.descriptionAzevedo, S.S., Graded identities for the matrix algebra of order n over an infinite field (2002) Commun. Algebra, 30 (12), pp. 5849-5860
dc.descriptionAzevedo, S.S., A basis for ℤ-graded identities of matrices over infinite fields (2003) Serdica, 29, pp. 149-158
dc.descriptionColombo, J., Koshlukov, P., Central polynomials in the matrix algebra of order two (2004) Linear Algebra Appl, 377, pp. 53-67
dc.descriptionDe Concini, C., Procesi, C., A characteristic free approach to invariant theory (1976) Adv. Math, 21 (3), pp. 330-354
dc.descriptionDi Vincenzo, O.M., On the graded identities of M 1,1(E) (1992) Israel J. Math, 80 (3), pp. 323-335
dc.descriptionDrensky, V., (1999) Free Algebras and PI Algebras, Graduate Course in Algebra, , Springer, Singapore
dc.descriptionKoshlukov, P., Weak polynomial identities for the matrix algebra of order two (1997) J. Algebra, 188 (2), pp. 610-625
dc.descriptionKoshlukov, P., Basis of the identities of the matrix algebra of order two over a field of characteristic p2 (2001) J. Algebra, 241, pp. 410-434
dc.descriptionKoshlukov, P., Azevedo, S.S., Graded identities for T-prime algebras over fields of positive characteristic (2002) Israel J. Math, 128, pp. 157-176
dc.descriptionKoshlukov, P., Krasilnikov, A., Just nonfinitely based varieties of 2-graded Lie algebras submittedRazmyslov, Y., Identities of Algebras and Their Representations, Translations Math (1994) Monographs, 138. , American Mathematical Society, Providence, RI
dc.descriptionRepin, D.V., Graded identities of a simple three-dimensional Lie algebra (2004) Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser, (SPEC. ISSUE 2), pp. 5-16. , in Russian
dc.descriptionRepin, D.V., (2005) Structure and identities of some graded Lie algebras, , PhD thesis, Ulyanovsk State University, Ulyanovsk , in Russian
dc.descriptionVasilovsky, S.Y., graded polynomial identities of the full matrix algebra (1998) Commun. Algebra, 26 (2), pp. 601-612. , ℤ
dc.descriptionVasilovsky, S.Y., n-graded polynomial identities of the full matrix algebra of order n (1999) Proc. Amer. Math. Soc, 127 (12), pp. 3517-3524. , ℤ
dc.descriptionVasilovsky, S., The basis of identities of a three-dimensional simple Lie algebra over an infinite field (1989) Algebra Logic, 28 (5), pp. 355-368
dc.languageen
dc.publisher
dc.relationInternational Journal of Algebra and Computation
dc.rightsfechado
dc.sourceScopus
dc.titleGraded Polynomial Identities For The Lie Algebra Sl2(k)
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución