Artículos de revistas
Man-machine Interface For The Control Of Cooling Processes With Forced-air Aimed At Energy Savings [interface Homem-máquina Para Controle De Processos De Resfriamento Com Ar Forçado Visando à Economia De Energia]
Registro en:
Ciencia Rural. , v. 38, n. 3, p. 705 - 710, 2008.
1038478
10.1590/S0103-84782008000300017
2-s2.0-42249115364
Autor
Teruel B.
Silveira P.
Marques F.
Cappelli N.
Institución
Resumen
The development of micro processed equipment is presented, with current exit for control of the speed of rotation of the fan motor of the system of forced air, using investing of the frequency. Through programming (software IHM.EXE), the user can define the mass to be cooled, in kilograms of the product. The equipment calculates through a programmable polynomial previously defined, the frequency of operation of the investor which corresponds to air specific flux, within the limits of the project. The equipment was installed in a forced-air cooling system, being considered by the calculation in useful mechanical power, the energy savings is estimated at around 82% with a rotation equivalent to 56% of the fan nominal, thus providing significant savings in system operating costs. 38 3 705 710 ASHRAE. Systems and applications. Methods of precooling of fruits, vegetables and flowers. Atlanta: (American Society of Heating, Refrigerating and Air-Conditioning Engineers). 1994. cap.10, p.1-10ARIFIN, B.B., CHAU, K.V., Cooling of strawberries in cartons with new vent hole designs (1988) ASHRAE Transactions, 94, pp. 1415-1426 BAIRD, C.D., An engineering/economic model for evaluating forced-air cooling systems for fruits and vegetables. Refrigeration Science and Technology. France (1985) Institute International of Refrigeration, pp. 259-266 BROSNAN, T., WEN, S.D., Precooling techniques and applications for horticultural products- a review (2001) International Journal of Refrigeration, 24, pp. 154-170 CASTRO, L.R., Effect of container openings and airflow rate on energy required for forced-air cooling of horticultural produce (2005) Canadian Biosystem Engineering, 21, pp. 3.1-3.9 FRASER H. OTTEN, L. Predicting 7/8 cooling times for peaches by comparing heat transfer modelling and field measurement methods. St. Joseph: (American Society of Agricultural Engineers) ASAE, 1992. 10p. (Paper n. 92-6016)KADER, A.A., (2002) Postharvest technology of horticultural crops, (3311). , 3.ed. Davis: Division of Agriculture and Natural Resources, University of California, 295p PROCEL, Programa Nacional de Conservação de Energia Elétrica. Capturado em 2006. On line. Disponível em: http://www.eletrobras.com/elb/procel/main.aspPROCEL Indústria, Eficiência Energética Industrial. Motor elétrico (2004) Guia avançado, , Brasília: PROCEL, 170p TALBOT, M.T. et al. Improving forced -air cooler performance. Florida: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. 1992. 9p. (Circular AE 108)TERUEL, M.B., Curvas de enfriamiento de naranjas refrigeradas en un sistema con aire forzado (2000) Revista Información Tecnológica, CIT, 11, pp. 25-29 TERUEL, M.B., Avaliação preliminar dos custos de resfriamento de laranja in natura (2002) Revista Brasileira de Fruticultura, 24, pp. 86-90. , SP, v TURCO, J.E.P., Consumo e custo de energia elétrica em equipamentos utilizados em galpão de frangos de corte. (2002) Revista Brasileira de Engenharia Agrícola e Ambiental, 6 (3), pp. 519-522