dc.creatorCunha A.
dc.creatorPastor A.
dc.date2014
dc.date2015-06-25T17:56:20Z
dc.date2015-11-26T14:44:25Z
dc.date2015-06-25T17:56:20Z
dc.date2015-11-26T14:44:25Z
dc.date.accessioned2018-03-28T21:53:12Z
dc.date.available2018-03-28T21:53:12Z
dc.identifier
dc.identifierJournal Of Mathematical Analysis And Applications. Academic Press Inc., v. 417, n. 2, p. 660 - 693, 2014.
dc.identifier0022247X
dc.identifier10.1016/j.jmaa.2014.03.056
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84899045366&partnerID=40&md5=f776b0d794e70e4d7eee40631fd015a4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87011
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87011
dc.identifier2-s2.0-84899045366
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252116
dc.descriptionIn this paper we study the initial-value problem associated with the Benjamin-Ono-Zakharov-Kuznetsov equation. We prove that the IVP for such equation is locally well-posed in the usual Sobolev spaces Hs(R2), s>2, and in the anisotropic spaces Hs1,s2(R2), s2>2, s1≥s2. We also study the persistence properties of the solution and local well-posedness in the weighted Sobolev classZs,r=Hs(R2)∩L2((1+x2+y2)rdxdy), where s>2, r≥0, and s≥2r. Unique continuation properties of the solution are also established. These continuation principles show that our persistence properties are sharp. © 2014 Elsevier Inc.
dc.description417
dc.description2
dc.description660
dc.description693
dc.descriptionBurq, N., Planchon, F., On well-posedness for the Benjamin-Ono equation (2008) Math. Ann., 340, pp. 497-542
dc.descriptionCalderón, A.P., Commutators of singular integral operators (1965) Proc. Natl. Acad. Sci. USA, 53, pp. 1092-1099
dc.descriptionCazenave, T., Lions, P.-L., Orbital stability of standing waves for some nonlinear Schrödinger equations (1982) Comm. Math. Phys., 85, pp. 549-561
dc.descriptionDawson, L., McGahagan, H., Ponce, G., On the decay properties of solutions to a class of Schrödinger equations (2008) Proc. Amer. Math. Soc., 136, pp. 2081-2090
dc.descriptionEsfahani, A., Pastor, A., Stability and decay properties of solitary waves solutions for the generalized BO-ZK equation, preprintEsfahani, A., Pastor, A., Instability of solitary wave solutions for the generalized BO-ZK equation (2009) J. Differential Equations, 247, pp. 3181-3201
dc.descriptionEsfahani, A., Pastor, A., Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation (2011) Proc. Amer. Math. Soc., 139, pp. 943-956
dc.descriptionEsfahani, A., Pastor, A., On the unique continuation property for Kadomtsev-Petviashvili-I and Benjamin-Ono-Zakharov-Kuznetsov equations (2011) Bull. Lond. Math. Soc., 43, pp. 1130-1140
dc.descriptionFonseca, G., Linares, F., Ponce, G., The IVP for the Benjamin-Ono equation in weighted Sobolev spaces II (2012) J. Funct. Anal., 262, pp. 2031-2049
dc.descriptionFonseca, G., Linares, F., Ponce, G., The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces, preprintFonseca, G., Ponce, G., The IVP for the Benjamin-Ono equation in weighted Sobolev spaces (2011) J. Funct. Anal., 260, pp. 436-459
dc.descriptionHille, E., (1972) Methods in Classical and Functional Analysis, , Addison-Wesley Publishing Co
dc.descriptionHunt, R., Muckenhoupt, B., Wheeden, R., Weighted norm inequalities for the conjugate function and Hilbert transform (1973) Trans. Amer. Math. Soc., 176, pp. 227-251
dc.descriptionIonescu, A.D., Kenig, C.E., Global well-posedness of the Benjamin-Ono equation in low-regularity spaces (2007) J. Amer. Math. Soc., 20, pp. 753-798
dc.descriptionIorio, R.J., On the Cauchy problem for the Benjamin-Ono equation (1986) Comm. Partial Differential Equations, 11, pp. 1031-1084
dc.descriptionIorio, R.J., The Benjamin-Ono equation in weighted Sobolev spaces (1990) J. Math. Anal. Appl., 157, pp. 577-590
dc.descriptionJorge, M.C., Cruz-Pacheco, G., Mier-y-Teran-Romero, L., Smyth, N.F., Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations (2005) Chaos, 15, p. 037104
dc.descriptionKaikina, E., Kato, K., Naumkin, P.I., Ogawa, T., Well-posedness and analytic smoothing effect for the Benjamin-Ono equation (2002) Publ. Res. Inst. Math. Sci., 38, pp. 651-691
dc.descriptionKato, T., Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations (1988) Comm. Pure Appl. Math., 41, pp. 891-907
dc.descriptionKenig, C.E., Koenig, K.D., On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations (2003) Math. Res. Lett., 10, pp. 879-895
dc.descriptionKoch, H., Tzvetkov, N., On the local well-posedness of the Benjamin-Ono equation in Hs(R) (2003) Int. Math. Res. Not. IMRN, 2003, pp. 1449-1464
dc.descriptionLatorre, J.C., Minzoni, A.A., Smyth, N.F., Vargas, C.A., Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kutznetsov lateral dispersion (2006) Chaos, 16, p. 043103
dc.descriptionMilanés, A., Some results about a bidimensional version of the generalized BO (2003) Commun. Pure Appl. Anal., 2, pp. 233-250
dc.descriptionMolinet, L., Pilod, D., The Cauchy problem for the Benjamin-Ono equation in L2 revisited (2012) Anal. PDE, 5, pp. 365-395
dc.descriptionMolinet, L., Saut, J.-C., Tzvetkov, N., Ill-posedness issues for the Benjamin-Ono and related equations (2001) SIAM J. Math. Anal., 33, pp. 982-988
dc.descriptionNahas, J., Ponce, G., On the persistent properties of solutions to semi-linear Schrödinger equation (2009) Comm. Partial Differential Equations, 34, pp. 1-20
dc.descriptionStein, E.M., The characterization of functions arising as potentials (1961) Bull. Amer. Math. Soc., 67, pp. 102-104
dc.descriptionTao, T., Global well-posedness of the Benjamin-Ono equation in H1(R) (2004) J. Hyperbolic Differ. Equ., 1, pp. 27-49
dc.descriptionUrrea, J.J., The Cauchy problem associated to the Benjamin equation in weighted Sobolev spaces (2013) J. Differential Equations, 254, pp. 1863-1892
dc.languageen
dc.publisherAcademic Press Inc.
dc.relationJournal of Mathematical Analysis and Applications
dc.rightsfechado
dc.sourceScopus
dc.titleThe Ivp For The Benjamin-ono-zakharov-kuznetsov Equation In Weighted Sobolev Spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución