dc.creatorDorea Carlos E.T.
dc.creatorMilani Basilio E.A.
dc.date1993
dc.date2015-06-30T14:33:22Z
dc.date2015-11-26T14:44:09Z
dc.date2015-06-30T14:33:22Z
dc.date2015-11-26T14:44:09Z
dc.date.accessioned2018-03-28T21:52:46Z
dc.date.available2018-03-28T21:52:46Z
dc.identifier780308611
dc.identifierAmerican Control Conference. Publ By Ieee, Piscataway, Nj, United States, v. , n. , p. 2668 - 2672, 1993.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0027335168&partnerID=40&md5=774397e212aefb573a314d62641e9fe1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/99872
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/99872
dc.identifier2-s2.0-0027335168
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252002
dc.descriptionThe disturbance decoupling problem using state feedback (DDP), with simultaneous infinite-time horizon optimal L-Q regulation (LQR), for continuous time-invariant linear systems, is formulated as a parameter optimization problem in L-Q regulators subjected to control constraints imposed by the solution of DDP. For computational solution of DDP it is proposed an efficient numerical procedure, which gives the solution directly in the form of constraints on some parameters of the control matrix. For computational solution of the optimization problem, it is proposed a specialized hybrid descent method, suitable for problems with severe control structural constraints, composed by a sequence of steps of the following methods: Modified Newton, Newton's and Quasi-Newton. The results are illustrated by a numerical example.
dc.description
dc.description
dc.description2668
dc.description2672
dc.languageen
dc.publisherPubl by IEEE, Piscataway, NJ, United States
dc.relationAmerican Control Conference
dc.rightsfechado
dc.sourceScopus
dc.titleComputational Method For Optimal L-q Regulation With Simultaneous Disturbance Decoupling
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución