dc.creator | Da Silva C.R.U. | |
dc.creator | Franco H.C.J. | |
dc.creator | Junqueira T.L. | |
dc.creator | Van Oers L. | |
dc.creator | Van Der Voet E. | |
dc.creator | Seabra J.E.A. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:56:18Z | |
dc.date | 2015-11-26T14:44:03Z | |
dc.date | 2015-06-25T17:56:18Z | |
dc.date | 2015-11-26T14:44:03Z | |
dc.date.accessioned | 2018-03-28T21:52:34Z | |
dc.date.available | 2018-03-28T21:52:34Z | |
dc.identifier | | |
dc.identifier | Environmental Science And Technology. American Chemical Society, v. 48, n. 20, p. 12394 - 12402, 2014. | |
dc.identifier | 0013936X | |
dc.identifier | 10.1021/es502552f | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84908123476&partnerID=40&md5=9634b39ce1db377c7d1c70b65187e009 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/87004 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/87004 | |
dc.identifier | 2-s2.0-84908123476 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1251951 | |
dc.description | This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources. | |
dc.description | 48 | |
dc.description | 20 | |
dc.description | 12394 | |
dc.description | 12402 | |
dc.description | (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis, , United States Environmental Protection Agency (EPA). EPA-420-R-10-006. February | |
dc.description | EU RED -European Renewable Energy Directive. Directive2009/28/EC of the European Parliament and of the Council of 23 April2009 on the promotion of the use of energy from renewable sourcesand amending and subsequently repealing Directives 2001/77/EC and2003/30/EC. Official Journal of the European Union. 5.6.2009Souza, R.R., Schaeffer, R., Meira, I., Can new legislation in importing countries represent new barriers to the development of an international ethanol market? (2011) Energy Policy, 39 (6), pp. 3154-3162 | |
dc.description | Khatiwada, D., Seabra, J., Silveira, S., Walter, A., Accounting greenhouse gas emissions in the life cycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations (2012) Energy Policy., 47, pp. 384-397 | |
dc.description | Dale, B.E., Anderson, J.E., Brown, R.C., Csonka, S., Dale, V.H., Herwick, G., Jackson, R.D., Wang, M.Q., Take a closer look: Biofuels can support environmental, economic and social goals (2014) Environ. Sci. Technol., 48, pp. 7200-7203 | |
dc.description | Foster-Carneiro, T., Berni, M.D., Dorileo, I.L., Rostagno, M.A., Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil (2013) Resour., Conserv. Recycl., 77, pp. 78-88 | |
dc.description | Nyko, D., Garcia, J.L.F., Milanez, A.Y., Dunham, F.B., A corrida tecnológica pelos biocombustíveis de segunda geração: uma perspectiva comparada (2011) Biocombustíveis, 32. , http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arquivos/conhecimento/bnset/set32101.pdf, BNDES Setorial, (accessed Sept 20, 2014) | |
dc.description | www.ctbe.org.br, accessed Sept 20, 2014Luo, L., Van Der Voet, E., Huppes, G., Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil (2009) Renewable Sustainable Energy Rev., 13, pp. 1613-1619 | |
dc.description | Seabra, J.E.A., Macedo, I.C., Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil (2011) Energy Policy, 39, pp. 421-428 | |
dc.description | Seabra, J.E.A., Tao, L., Chum, H.L., Macedo, I.C., A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering (2010) Biomass Bioenergy, 34 (8), pp. 1065-1078 | |
dc.description | Dias, M.O.S., Junqueira, T.L., Cavalett, O., Cunha, M.P., Jesus, C.D.F., Rossell, C.E.V., Filho, R.M., Bonomi, A., Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash (2012) Bioresour. Technol., 103 (1), pp. 152-161 | |
dc.description | Albarelli, J.Q., Ensinas, A.V., Silva, M.A., Product diversification to enhance economic viability of second generation ethanol production in Brazil: The case of the sugar and ethanol joint production (2014) Chem. Eng. Res. Des., 92, pp. 1470-1481 | |
dc.description | Raele, R., Boaventura, J.M.G., Fischmann, A.A., Sarturi, G., Scenarios for the second generation ethanol in Brazil (2014) Technol. Forecasting Social Change, 87, pp. 205-223 | |
dc.description | Bordonal, R.O., Figueiredo, E.B., Scala, N.J.R., Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest, considering other conservationist management practices (2012) Global Change Biol. Bioenergy, 4, pp. 846-858 | |
dc.description | Guinée, J., (2002) Handbook on Life Cycle Assessment - An Operational Guide to the ISO Standards, 7. , Kluwer Academic Publishers | |
dc.description | CML-IA Spreadsheet, , http://www.cml.leiden.edu/software/data-cmlia.html, version 3.9. (accessed Sept 20, 2014) | |
dc.description | (2012) CMLCA Software, , http://www.cmlca.eu/cmlca52beta.zip, accessed Sept 20, 2014 | |
dc.description | Chagas, M.F., Cavalett, O., Silva, C.R.U., Seabra, J.E.A., Bonomi, A., Adaptação de Inventário de Ciclo de Vida da cadeia produtiva do etanol de cana-de-açúcar no Brasil (2012) III Congresso Brasileiro em Gestão Do Ciclo de Vida de Produtos e Serviços | |
dc.description | Swiss Centre for Life Cycle Inventories, Ecoinvent Database, , http:www.ecoinvent.ch/, Version 2.0. (accessed Sept 20, 2014) | |
dc.description | Balanço Energético Nacional, (2012), https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2012.pdf, 2012 - Ano base 2011. Brazil: Empresa de Pesquisa Energética. Rio de Janeiro: EPE, (accessed Sept 20, 2014)Macedo, I.C., Seabra, J.E.A., Mitigação of GHG emissions using sugarcane bioethanol (2008) Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment, pp. 95-111. , Zuurbier, P. Van de Vooren, J. Wageningen Academic Publishers: The Netherlands | |
dc.description | Nassar, A.M., Rudorff, B.F.T., Antoniazzi, L.B., Aguiar, D.A., Bacchi, M.R.P., Adami, M., Prospects of the sugarcane expansion in Brazil: Impacts on direct and indirect land use changes (2008) Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment, pp. 66-93. , Zuurbier, P. Van de Vooren, J. Wageningen Academic Publishers: The Netherlands | |
dc.description | Walter, A., Dolzan, P., Quilodran, O., De Oliveira, J.G., Da Silva, C., Piacente, F., Sergerstedt, A., Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects (2010) Energy Policy, 39 (10), pp. 5703-5716 | |
dc.description | Adami, M., Rudorff, B.F.T., Freitas, R.M., Aguiar, D.A., Sugawara, L.M., Mello, M.P., Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil (2012) Sustainability, 4, pp. 574-585 | |
dc.description | HTTP://www.sigam.ambiente.sp.gov.br/sigam2/Repositorio/24/Documentos/Lei%20Estadual_11241_2002.pdf, Dispõe sobre a eliminação gradativa da queima da palha da cana-de-açúcar e dá providências correlatas. Lei Estadual no. 11.241/2002. (accessed Sept 20, 2014)Cavalett, O., Chagas, M.F., Seabra, J.E.A., Bonomi, A., Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods (2013) Int. J. Life Cycle Assess., 18, pp. 647-658 | |
dc.description | Hamza, M.A., Anderson, W.K., Soil compaction in cropping systems: A review of the nature. Causes and possible solutions (2005) Soil Tillage Res., 82 (2), pp. 121-145 | |
dc.description | (2009) Bioetanol Combustível: Uma Oportunidade para o Brasil, , http://www.cgee.org.br/publicacoes/bioetanol2_2009.php, Centro de Gestão e Estudos Estratégicos. Brasília, DF, (accessed Sept 20, 2014) | |
dc.description | São Paulo State. CETESB (Companhia de Tecnologia de Saneamento Ambiental). (P4.231. Dez/ 2006)Leal, M.R.L.V., Walter, A.S., Seabra, J.E.A., Sugarcane as an energy source (2013) Biomass Convers. Biorefin., 3 (1), pp. 17-26 | |
dc.description | Filho, A.B., A Geração Termoelétrica com a Queima do Bagaço de Cana-de-Açúcar no Brasil - Análise do Desempenho da Safra 2009-2010 (2011) CONAB (Companhia Nacional de Abastecimento), , http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_05_05_15_45_40_geracao_termo_baixa_res.pdf, accessed Sept 20, 2014 | |
dc.description | Dias, M.O.S., Modesto, M., Ensinas, A.V., Nebra, A.S., Maciel Filho, R., Rossell, C.E.V., Improving bioethanol production from sugarcane: Evaluation of distillation, thermal integration and cogeneration systems (2011) Energy, 36 (6), pp. 3691-3703 | |
dc.description | Walter, A., Galdos, M.V., Scarpare, F.V., Leal, M.R.L.V., Seabra, J.E.A., Cunha, M.P., Picoli, M.C., Oliveira, C.O.F., Brazilian sugarcane ethanol: Developments so far and challanges for the future (2014) WIREs Energy Environ., 3, pp. 70-92 | |
dc.description | De Almeida, J.L., Sampaio, P.H., (2010) Evaporator of Vinasse Concentration for Distilleries in General, , US Patent, 4 Mar | |
dc.description | Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Dudgeon, D., (2011) Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol - Dilute-acid Pretreatment and Enzimatic Hydrolysis of Corn Stover, , http://www.nrel.gov/biomass/pdfs/47764.pdf, Technical Report | |
dc.description | National Renewable Energy Laboratory, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy: (accessed Sept 20, 2014) | |
dc.description | Hsu, D.D., Inman, D., Heath, G.A., Wolfrum, E.J., Mann, M.K., Aden, A., Life cycle environmental impacts of selected U.S. Ethanol production and use pathways in 2022 (2010) Environ. Sci. Technol., 44 (13), pp. 5289-5297 | |
dc.description | (2007) The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, , https://greet.es.anl.gov/, GREET. Versão 1.8c. Argonne National Latoratory, U.S. Department of Energy: (accessed Sept 20, 2014) | |
dc.description | Primo, K.R., Salomon, K.R., Teixeira, F.N., Lora, E.S., Estudo de dispersão atmosférica dos óxidos de nitrogênio (NOx) emitidos durante a queima de bagaço em uma usina de açúcar (2005) Biomassa Energia, 2, pp. 79-90 | |
dc.description | Boddey, R.M., Soares, L.H.B., Alves, B.J.R., Urquiaga, S., Bio-ethanol Production in Brazil (2008) Biofuels, Solar and Wind As Renewable Energy Systems, pp. 321-356. , Pimentel, D. Springer Science+Business Media B.V. Chapter 3 | |
dc.description | Seabra, J.E.A., (2008) Avaliação Técnico-econômica de Opções Para O Aproveitamento Integral da Biomassa de Cana No Brasil, , Ph.D. Thesis, Universidade Estadual de Campinas, Campinas | |
dc.description | Hassuani, S.J., Leal, M.R.L.V., Macedo, I.C., (2005) Biomass Power Generation: Sugarcane Bagasse and Trash, , http://www.sucre-ethique.org/IMG/pdf/CTC_energy_-_biomass_1_.pdf, PNUD Brasil and Centro de Tecnologia Canavieira: Piracicaba, (accessed Sept 20, 2014) | |
dc.language | en | |
dc.publisher | American Chemical Society | |
dc.relation | Environmental Science and Technology | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Long-term Prospects For The Environmental Profile Of Advanced Sugar Cane Ethanol | |
dc.type | Artículos de revistas | |