dc.creatorLuna I.
dc.creatorSoares S.
dc.creatorLopes J.E.G.
dc.creatorBallini R.
dc.date2009
dc.date2015-06-26T13:34:36Z
dc.date2015-11-26T14:43:56Z
dc.date2015-06-26T13:34:36Z
dc.date2015-11-26T14:43:56Z
dc.date.accessioned2018-03-28T21:52:24Z
dc.date.available2018-03-28T21:52:24Z
dc.identifier9781424450985
dc.identifier2009 15th International Conference On Intelligent System Applications To Power Systems, Isap '09. , v. , n. , p. - , 2009.
dc.identifier
dc.identifier10.1109/ISAP.2009.5352814
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-76549132747&partnerID=40&md5=422993c9d102504cebbdbe4d1edb0514
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/92013
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/92013
dc.identifier2-s2.0-76549132747
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1251904
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThis study presents a prediction system based on evolving fuzzy models and a bottom-up approach for daily streamflow forecasting. Prediction models are based on adaptive Takagi-Sugeno fuzzy inference systems. These models make use of a sequential learning approach for updating their own structure and parameters over time according to changes or variations identified in the series, whereas rainfall and runoff information is processed at each time instant. Models are adjusted following a bottom-up approach, which consists of dividing the global problem into sub-problems, and each sub-problem is resolved separately. Final estimate is given by the aggregation of the parts. The proposed approach is compared to the Soil Moisture Accounting Procedure (SMAP), a hydrological model used by various hydroelectric companies of the Brazilian electrical sector. Simulation studies indicate that the evolving fuzzy system presents an adequate performance, leading to a promising alternative for daily streamflow forecasting. Indeed, results are improved when predictors are combined, primarily for a multistep ahead prediction task. © 2009 IEEE.
dc.description
dc.description
dc.description
dc.description
dc.descriptionCNPq,CAPES,Araucaria FAPEMIG - Brazilian res. funding agencies Found.,COPEL,Itaipu Power Plant
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionHong, Y.-S.T., White, P.A., Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm (2009) Advances in Water Resources, 32, pp. 110-119
dc.descriptionSolomatine, D.P., Siek, M.B., Modular learning in forecasting natural phenomena (2006) Neural Networks, 19 (2), pp. 215-224
dc.descriptionZambelli, M., Luna I, Soares, S., Long-term hydropower scheduling based on deterministic nonlinear optimization and annual inflow forecasting models (2009) Procs. of the PowerTech Conference, pp. 1-8
dc.descriptionPrice, R., (2008) Lecture on knowing the context between hydroinformatics and flood modelling, , UNESCO-IHE Institute for Water Edutation, Tech. Rep., November
dc.descriptionZealand, C.M., Burn, D.H., Simonovic, S.P., Short term streamflow forecasting using artificial neural networks (1999) Journal of Hydrology, 214, pp. 32-48
dc.descriptionNayak, P., Sudheer, K., Rangan, D., Ramasastri, K., A neuro-fuzzy computing technique for modeling hydrological time series (2004) Journal of Hydrology, 291, pp. 52-66
dc.descriptionBowden, G.J., Maier, H.R., Dandy, G.C., Input determination for neural network models in water resources applications. Part 2. Case Study: Forecasting salinity in a river (2005) Journal of Hydrology, (301), pp. 93-107
dc.descriptionTakagi, T., Sugeno, M., Fuzzy identification of systems and its applications to modeling and control (1985) IEEE Transactions on Systems, Man and Cybernetics, 1, pp. 116-132
dc.descriptionLuna, I., Soares, S., Ballini, R., An adaptive hybrid model for monthly streamflow forecasting (2007) Proceedings of The IEEE International Conference on Fuzzy Systems, pp. 1-6
dc.descriptionLopes, J., Braga, B., Conejo, J., (1982) SMAP - A Simplified Hydrological Model, Applied Modelling in Catchment Hydrology, , Ed. V.P.Singh, Water Resourses Publications
dc.descriptionDawson, C., Wilby, R., Hydrological modelling using artificial neural networks (2001) Progress in Physical Geography, 25 (1), pp. 80-108
dc.descriptionChiu, S., A cluster estimation method with extension to fuzzy model identification (1994) Proceedings of The IEEE International Conference on Fuzzy Systems, 2, pp. 1240-1245. , June
dc.descriptionAngelov, P.P., Filev, D.P., An approach to online identification of Takagi-Sugeno fuzzy models (2004) IEEE Transactions on Systems, Man and Cybernetics- Part B, 34 (1), pp. 484-498
dc.descriptionJacobs, R., Jordan, M., Nowlan, S., Hinton, G., Adaptive mixture of local experts (1991) Neural Computation, 3 (1), pp. 79-87
dc.descriptionEr, M.J., Wu, S., A fast learning algorithm for parsimonious fuzzy neural systems (2002) Fuzzy Sets and Systems, 126, pp. 337-351
dc.descriptionWang, L., (1994) Adaptive Fuzzy Systems and Control, , Prentice Hall
dc.descriptionHaykin, S., (2001) Kalman Filtering and Neural Networks, , John Wiley & Sons, Inc
dc.descriptionAitken, A., Assessing systematic errors in Rainfall-Runoff models (1973) Journal of Hydrology, 20, pp. 121-136
dc.languageen
dc.publisher
dc.relation2009 15th International Conference on Intelligent System Applications to Power Systems, ISAP '09
dc.rightsfechado
dc.sourceScopus
dc.titleVerifying The Use Of Evolving Fuzzy Systems For Multi-step Ahead Daily Inflow Forecasting
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución