dc.creatorAspnes D.E.
dc.creatorKamiya I.
dc.creatorTanaka H.
dc.creatorBhat R.
dc.creatorFlorez L.T.
dc.creatorHarbison J.P.
dc.creatorQuinn W.E.
dc.creatorTamargo M.
dc.creatorGregory S.
dc.creatorPudensi M.A.A.
dc.creatorSchwarz S.A.
dc.creatorBrasil M.J.S.P.
dc.creatorNahory R.E.
dc.date1993
dc.date2015-06-30T14:31:46Z
dc.date2015-11-26T14:43:35Z
dc.date2015-06-30T14:31:46Z
dc.date2015-11-26T14:43:35Z
dc.date.accessioned2018-03-28T21:51:48Z
dc.date.available2018-03-28T21:51:48Z
dc.identifier
dc.identifierThin Solid Films. , v. 225, n. 01/02/15, p. 26 - 31, 1993.
dc.identifier406090
dc.identifier10.1016/0040-6090(93)90121-5
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0005286988&partnerID=40&md5=bcd9322e4d80d014877ec98b2646f022
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/99670
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/99670
dc.identifier2-s2.0-0005286988
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1251746
dc.descriptionWe summarize recent applications of two real-time optical diagnostic techniques, reflectance difference spectroscopy (RDS) and spectroellipsometry (SE), to epitaxial growth on GaAs and atomic layer epitaxy (ALE) in particular. Using RDS, we obtain the first real-time spectroscopic data of the evolution of the (001) GaAs surface to cyclic and non-cycle exposures of atmospheric pressure H2, H2 and trimethylgallium, and H2 and arsine, which simulate growth by ALE. None of our observations is consistent with any previously proposed simple model, emphasizing the necessity of real-time measurements for the analysis of complex surface reactions. Using SE we have constructed a closed-loop system for controlling the compositions of AlxGa1-xAs layers grown by chemical beam epitaxy. We have produced various graded-compositional structures, including parabolic quantum wells 200 Å wide where the composition was controlled by analysis of the running outermost 3 Å (about 1 monolayer) of depositing material. © 1993.
dc.description225
dc.description01/02/15
dc.description26
dc.description31
dc.descriptionGoodman, Pessa, (1986) J. Appl. Phys., 60, p. R65. , and references cited therein
dc.descriptionOzeki, Ohtsuka, Sakuma, Kodama, (1991) J. Cryst. Growth, 107, p. 102
dc.descriptionOzeki, Mochizuki, Ohtsuka, Kodama, (1988) Appl. Phys. Lett., 53, p. 1509
dc.descriptionNishizawa, Kurabayashi, Abe, Sakurai, Gallium arsenide thin films by low-temperature photochemical processes (1987) Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 5, p. 1572
dc.descriptionYu, Buchan, Souda, Kuech, Surface Chemistry and Mechanism of Atomic Layer Growth of GaAs (1991) MRS Proceedings, 222, p. 3
dc.descriptionCreighton, Banse, The Surface Chemistry of GaAs Atomic Layer Epitaxy (1991) MRS Proceedings, 222, p. 15
dc.descriptionAspnes, Harbison, Studna, Florez, (1987) Phys. Rev. Lett., 59, p. 1687
dc.descriptionAspnes, Harbison, Studna, Florez, Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs (1988) Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 6, p. 1327
dc.descriptionKobayashi, Horikoshi, (1989) Jpn. J. Appl. Phys., 28, p. L1880
dc.descriptionKobayashi, Horikoshi, Pyrolysis of Trimethylgallium on (001) GaAs Surface Investigated by Surface Photo-Absorption (1991) Japanese Journal of Applied Physics, 30, p. L319
dc.descriptionAspnes, Quinn, Gregory, (1990) Appl. Phys. Lett., 57, p. 2707
dc.descriptionAspnes, Quinn, Tamargo, Pudensi, Schwarz, Brasil, Nahory, Gregory, (1992) Appl. Phys. Lett., 60, p. 1244
dc.descriptionAspnes, Kamiya, Tanaka, Bhat, Atomic layer epitaxy on (001) GaAs: Real-time spectroscopy (1992) Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 10, p. 1725
dc.descriptionKamiya, Aspnes, Tanaka, Florez, Harbison, Bhat, (1992) Phys. Rev. Lett., 68, p. 627
dc.descriptionKamiya, Aspnes, Florez, Harbison, (1992) Phys. Rev. B, 46, p. 15894
dc.descriptionGomyo, Suzuki, Iijima, (1988) Phys. Rev. Lett., 60, p. 2645
dc.descriptionFroyen, Zunger, (1991) Phys. Rev. Lett., 59, p. 324
dc.descriptionChen, Stringfellow, (1991) Appl. Phys. Lett., 59, p. 324
dc.descriptionChiu, (1989) Appl. Phys. Lett., 55, p. 1244
dc.descriptionCreighton, (1990) Surf. Sci., 234, p. 287
dc.descriptionMemmert, Yu, (1990) Appl. Phys. Lett., 56, p. 1883
dc.descriptionAspnes, Colas, Studna, Bhat, Koza, Keramidas, (1988) Phys. Rev. Lett., 61, p. 2782
dc.descriptionReflectance–difference studies of organometallic chemical vapor deposition growth transients on (001) GaAs (1989) Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7, p. 711
dc.descriptionFarrell, Harbison, Peterson, Molecular-beam epitaxy growth mechanisms on GaAs(100) surfaces (1987) Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 5, p. 1482
dc.descriptionAnnapragada, Salim, Jensen, Ftir Studies Of Organometallic Surface Chemistry Relevant To Atomic Layer Epitaxy. (1991) MRS Proceedings, 222, p. 81
dc.descriptionStudna, Aspnes, Florez, Wilkens, Ryan, Low-retardance fused-quartz window for real-time optical applications in ultrahigh vacuum (1989) Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7, p. 3291
dc.descriptionAspnes, Studna, (1975) Appl. Opt., 14, p. 220
dc.description(1978) Rev. Sci. Instrum., 49, p. 291
dc.descriptionAspnes, Bhat, Colas, Florez, Gregory, Harbison, Kamiya, Wassermeier, Real-Time Optical Diagnostics For Measuring And Controlling Epitaxial Growth (1991) MRS Proceedings, 222, p. 63. , 2nd edn
dc.languageen
dc.publisher
dc.relationThin Solid Films
dc.rightsfechado
dc.sourceScopus
dc.titleReal-time Optical Diagnostics For Measuring And Controlling Epitaxial Growth
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución