dc.creatorFlores F.C.
dc.creatorDe Alencar Lotufo R.
dc.date2008
dc.date2015-06-30T19:21:24Z
dc.date2015-11-26T14:43:28Z
dc.date2015-06-30T19:21:24Z
dc.date2015-11-26T14:43:28Z
dc.date.accessioned2018-03-28T21:51:35Z
dc.date.available2018-03-28T21:51:35Z
dc.identifier9780769533582
dc.identifierProceedings - 21st Brazilian Symposium On Computer Graphics And Image Processing, Sibgrapi 2008. , v. , n. , p. 95 - 102, 2008.
dc.identifier
dc.identifier10.1109/SIBGRAPI.2008.22
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-56749104392&partnerID=40&md5=06f3159b03359f5690ac3ed7985831cc
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105884
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105884
dc.identifier2-s2.0-56749104392
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1251686
dc.descriptionEvaluation of segmentation methods applied to image sequences consists in the analysis of such methods according to quantitative and/or qualitative criteria, usually driven to some application. Literature proposes several metrics for quantitative evaluation of object segmentation methods to image sequences, but it is still considered an open problem, since no one of the proposed metrics is considered the standard one. More, as the best of our knowledge, there is no method in literature that does computational quantitative evaluation of assisted methods to object segmentation in image sequence. This paper introduces a benchmark to do such quantitative evaluation. This evaluation is done according to several criteria such as the robustness of segmentation and the easiness to segment the objects through the sequence. Experimental results also evaluates the robustness of the watershed from propagated markers technique. © 2008 IEEE.
dc.description
dc.description
dc.description95
dc.description102
dc.descriptionFalcão, A.X., Stolfi, J., Lotufo, R.A., The Image Foresting Transform: Theory, Algorithms and Applications (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (1), pp. 19-29. , January
dc.descriptionLucas, B., Kanade, T., An interative image registration technique with an application to stereo system (1981) Proceedings of DARPA Image Understanding Workshop, pp. 121-130
dc.descriptionBeucher, S., Meyer, F., Mathematical Morphology in Image Processing (1992) The Morphological Approach to Segmentation: The Watershed Transformation, pp. 433-481. , chapter 12, Marcel Dekker
dc.descriptionErden, C., Sankur, B., Tekalp, A., Performance Measures for Video Object Segmentation and Tracking (2004) IEEE Transactions on Image Processing, 13 (7), pp. 937-951. , July
dc.descriptionK. M. N.-P. D. D. Z. Ebrahimi. Evaluation of segmentation methods for surveillance applications. In EUSIPCO 2000, pages 1045-1048, Kobe, Japan, September 2000F. C. Flores and R. A. Lotufo. Watershed from Propagated Markers Improved by a Marker Binding Heuristic. In J. B. G.J.F. Banon and U. Braga-Neto, editors, Mathematical Morphology and its Applications to Image and Signal Processing, Proc. ISMM'07, pages 313-323. MCT/INPE, 2007Moscheni, F., Bhattacharjee, S., Kunt, M., Spatiotemporal Segmentation Based on Region Merging (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (9), pp. 897-915. , September
dc.descriptionFlores, F.C., Lotufo, R.A., Object Segmentation in Image Sequences by Watershed from Markers: A Generic Approach (2003) IEEE Proceedings of SIBGRAPI'2003, pp. 347-352. , Sao Carlos, Brazil, October
dc.descriptionHe, Z., Dynamic programming framework for automatic video object segmentation and vision-assisted video preprocessing (2005) IEE Proceedings of Vision, Image and Signal Processing, pp. 597-603. , October
dc.descriptionCorreia, P., Pereira, F., Objective Evaluation of Video Segmentation Quality (2003) IEEE Transactions on Image Processing, 12 (2), pp. 186-200. , February
dc.descriptionCorreia, P., Pereira, F., Video Object Relevance Metrics for Overall Segmentation Quality Evaluation (2006) EURASIP Journal on Applied Signal Processing, pp. 1-11. , Article ID 82915
dc.descriptionSalembier, P., Ruiz, J., On Filters by Reconstruction for Size and Motion Simplification (2002) Mathematical Morphology and its Applications to Image and Signal Processing, Proc. ISMM'02, pp. 425-434. , H. Talbot and R. Beare, editors, CSIRO Publishing
dc.descriptionSalembier, P., Marques, F., Pardas, M., Morros, J.R., Corset, I., Jeannin, S., Bouchard, L., Marcotegui, B., Segmentation-Based Video Coding System Allowing the Manipulation of Objects (1997) IEEE Transactions on Circuits and Systems for Video Technology, 7 (1), pp. 60-74. , February
dc.descriptionSmith, P., Drummond, T., Cipolla, R., Layered Motion Segmentation and Depth Ordering by Tracking Edges (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (4), pp. 479-494. , April
dc.descriptionVillegas, P., Marichal, X., Perceptually-weighted evaluation criteria for segmentation masks in video sequences (2004) IEEE Transactions on Image Processing, 13 (8), pp. 1092-1103. , August
dc.descriptionMech, R., Marques, F., Objective Evaluation Criteria for 2-D Shape Estimation Results of Moving Objects (2002) EURASIP Journal on Applied Signal Processing, 2002, pp. 401-409
dc.languageen
dc.publisher
dc.relationProceedings - 21st Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI 2008
dc.rightsfechado
dc.sourceScopus
dc.titleBenchmark For Quantitative Evaluation Of Assisted Object Segmentation Methods To Image Sequences
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución