Artículos de revistas
The Contribution Of Microbunching Instability To Solar Flare Emission In The Ghz To Thz Range Of Frequencies
Registro en:
Astrophysical Journal. Institute Of Physics Publishing, v. 791, n. 1, p. - , 2014.
0004637X
10.1088/0004-637X/791/1/31
2-s2.0-84905262850
Autor
Michael Klopf J.
Kaufmann P.
Raulin J.-P.
Szpigel S.
Institución
Resumen
Recent solar flare observations in the sub-terahertz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the gigahertz range. Suggested interpretations explain the terahertz spectral component but do not account for the simultaneous microwave component. We present a mechanism for producing the observed "double spectra." Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving rise to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at a higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR/CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution to microwaves, at least for certain events where physical conditions for the occurrence of the ISR/CSR microbunching mechanism are possible. © 2014. The American Astronomical Society. All rights reserved. 791 1
AFOSR; U.S. Department of Energy; DE-AC05-06OR23177; DOE; U.S. Department of Energy Akabane, K., Nakajima, H., Ohki, K., (1973) SoPh, 33, p. 431 Antiochos, S.K., The Magnetic Topology of Solar Eruptions (1998) Astrophysical Journal, 502 (2 NUMBER 2), pp. L181-L184. , DOI 10.1086/311507 Brown, J.C., (1971) SoPh, 18, p. 489 Brown, J.C., Melrose, D.B., (1977) SoPh, 52, p. 117 Byrd, J.M., Leemans, W.P., Loftsdottir, A., (2002) PhRvL, 89, p. 224801. , 10.1103/PhysRevLett.89.224801 Carr, G.L., Martin, M.C., McKinney, W.R., Jordan, K., Neil, G.R., Williams, G.P., High-power terahertz radiation from relativistic electrons (2002) Nature, 420 (6912), pp. 153-156. , DOI 10.1038/nature01175 Colson, W.B., (1976) PhLA, 59, p. 187 Croom, D.L., (1971) SoPh, 19, p. 152 Deming, D., Kostiuk, T., Glenar, D., (1991) BAAS, 23, p. 1038. , 0002-7537 Dulk, G.A., (1985) ARA&A, 23, p. 169. , 10.1146/annurev.aa.23.090185.001125 0066-4146 Dulk, G.A., Marsh, K.A., (1982) ApJ, 259, p. 350. , 10.1086/160171 Fleishman, G.F., Kontar, E.P., (2010) ApJL, 709, p. 127. , 10.1088/2041-8205/709/2/L127 0004-637X Friedman, M., Herndon, M., (1973) PhFl, 16, p. 1982 Gary, G.A., Moore, R.L., Eruption of a multiple-turn helical magnetic flux tube in a large flare: Evidence for external and internal reconnection that fits the breakout model of solar magnetic eruptions (2004) Astrophysical Journal, 611 (1), pp. 545-556. , DOI 10.1086/422132 Gary, D.E., (1985) ApJ, 297, p. 799. , 10.1086/163576 Ginzburg, V.L., Syrovatskii, S.Y., (1965) ARA&A, 3, p. 297. , 10.1146/annurev.aa.03.090165.001501 0066-4146 Hanaoka, Y., (1999) PASJ, 51 (4), p. 483. , 10.1093/pasj/51.4.483 0004-6264 Hirschmugl, C.J., Sagurton, M., Williams, G.P., (1991) PhRvA, 44, p. 1316 Holman, G.D., Aschwanden, M.J., Aurass, H., (2011) SSRv, 159, p. 107. , 10.1007/s11214-010-9680-9 Hulbert, S.L., Williams, G.P., (1998) Experimental Methods in the Physical Sciences, Vol. 31, Synchrotron Radiation Sources, p. 1 Ingelman, G., Siegbahn, K., (1998) Fysik-Aktuellt, 1, p. 3. , 0283-9148 Jackson, J.D., (1998) Classical Electrodynamics Kai, K., (1986) SoPh, 104, p. 235 Kaufmann, P., (2011) ApJ, 742 (2), p. 106. , 10.1088/0004-637X/742/2/106 0004-637X 106 Kaufmann, P., Correia, E., Costa, J.E.R., Zodi Vaz, A.M., (1986) A&A, 157, p. 11. , 0004-6361 Kaufmann, P., Correia, E., Costa, J.E.R., (1985) Natur, 313, p. 31. , 10.1038/313380a0 Kaufmann, P., Marcon, R., Abrantes, A., (2014)Kaufmann, P., Raulin, J.-P., Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves? (2006) Physics of Plasmas, 13 (7), p. 070701. , DOI 10.1063/1.2244526 Kaufmann, P., Raulin, J.-P., Gimenez De Castro, C.G., Levato, H., Gary, D.E., Costa, J.E.R., Marun, A., Correia, E., A new solar burst spectral component emitting only in the terahertz range (2004) Astrophysical Journal, 603 (2), pp. L121-L124. , DOI 10.1086/383186 Kaufmann, P., Trottet, G., Giménez De Castro, C.G., (2009) SoPh, 255, p. 131. , 10.1007/s11207-008-9312-7 Kaufmann, P., White, S.M., Freeland, S.L., (2013) ApJ, 768 (2), p. 134. , 10.1088/0004-637X/768/2/134 0004-637X 134 Kellermann, K.I., Pauliny-Toth, I.I.K., (1969) ApJL, 155, p. 71. , 10.1086/180305 0004-637X Kim, J.K., (2001) X-Ray Data Booklet Klopf, J.M., Greer, A., Gubeli, J., (2007) NucIM, 582, p. 114 Klopf, M., Kaufmann, P., Raulin, P.J., (2010) BAAS, 42, p. 905. , 0002-7537 Kontar, E., Brown, J.C., Emslie, A.G., (2011) SSRv, 159, p. 301. , 10.1007/s11214-011-9804-x Kurt, V.G., Yushkov, Yu., B., Kudela, K., Galkin, V.I., (2010) CosRe, 48, p. 72. , 10.1134/S0010952510010053 Lawrence, J.S., Infrared and submillimeter atmospheric characteristics of high Antarctic Plateau sites (2004) Publications of the Astronomical Society of the Pacific, 116 (819), pp. 482-492. , DOI 10.1086/420757 Lin, R.P., Relationship of solar flare accelerated particles to solar energetic particles (SEPs) observed in the interplanetary medium (2005) Advances in Space Research, 35 (10), pp. 1857-1863. , DOI 10.1016/j.asr.2005.02.087, PII S0273117705002231 Lüthi, A., Lüdi, A., Magun, A., (2004) A&A, 420, p. 361. , 10.1051/0004-6361:20035899 0004-6361 Motz, H., (1951) JAP, 22, p. 527. , 1475-6072 Motz, H., Walsh, D., (1962) JAP, 33, p. 978. , 1475-6072 Myagkova, I.N., Kuznetsov, S.N., Yushkov, Yu., B., Kudela, K., (2004) 35th COSPAR Scientific Assembly, 18-25 July, Paris, France, p. 1511 Nodvick, J.S., Saxon, D.S., (1954) PhRv, 96, p. 180 Ramaty, R., (1969) ApJ, 158, p. 753. , 10.1086/150235 Ramaty, R., Lingenfelter, R.E., (1967) JGR, 72, p. 897. , 10.1029/JZ072i003p00879 0148-0227 Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H., Gamma-Ray and Millimeter-Wave Emissions from the 1991 June X-Class Solar Flares (1994) Astrophysical Journal, 436 (2 NUMBER 1), p. 941. , DOI 10.1086/174969 Raulin, J.P., Makhmutov, V.S., Kaufmann, P., Pacini, A.A., Luthi, T., Hudson, H.S., Gary, D.E., Analysis of the impulsive phase of a solar flare at submillimeter wavelengths (2004) Solar Physics, 223 (1-2), pp. 181-199. , DOI 10.1007/s11207-004-1300-y Roy, R.J., (1979) SoPh, 64, p. 143 Sakai, J.I., Nagasugi, Y., Emission of electromagnetic waves by proton beams in solar plasmas (2007) Astronomy and Astrophysics, 474 (2), pp. L33-L36. , DOI 10.1051/0004-6361:20078471 Sakai, J.I., Nagasugi, Y., Saito, S., Kaufmann, P., Simulating the emission of electromagnetic waves in the terahertz range by relativistic electron beams (2006) Astronomy and Astrophysics, 457 (1), pp. 313-318. , DOI 10.1051/0004-6361:20065368 Schiff, L.I., (1946) RScI, 17, p. 67 Schwinger, J., (1949) PhRv, 75, p. 1912 Shimabukuro, F.I., (1970) SoPh, 15, p. 424 Silva, A.V.R., Share, G.H., Murphy, R.J., (2007) SoPh, 245, p. 311. , 10.1007/s11207-007-9044-0 Socas-Navarro, H., The three-dimensional structure of a sunspot magnetic field (2005) Astrophysical Journal, 631 (2), pp. L167-L170. , DOI 10.1086/497334 Stupakov, G., Heifets, S., (2002) PhRv, 5, p. 054402 Sturrock, P.A., (1987) SoPh, 113, p. 13 Suen, J., Fang, M., Lubin, P., (2014) IEEE Trans. THz Sci. Technol., 4, p. 86. , 10.1109/TTHZ.2013.2294018 Tandberg-Hanssen, E., Emslie, G., (1988) The Physics of Solar Flares, p. 105 Trottet, G., Klein, L.K., Molodij, G., Sémery, A., (2006) 36th COSPAR Scientific Assembly, July 13-23, Beijing, China, Abstract #1788 Trottet, G., Krucker, S., Lüthi, T., Magun, A., (2008) ApJ, 678 (1), p. 509. , 10.1086/528787 0004-637X 509 Trottet, G., Raulin, P.J., Giménez De Castro, G., (2011) SoPh, 273, p. 339 Venturini, M., Warnock, R., (2002) PhRvL, 89, p. 224802 White, S.M., Krucker, S., Shibasaki, K., Yokoyama, T., Shimojo, M., Kundu, M.R., Radio and hard X-ray images of high-energy electrons in an x-class solar flare (2003) Astrophysical Journal, 595 (2), pp. L111-L114. , DOI 10.1086/379274 White, S.M., Kundu, M.R., Bastian, T.S., (1992) ApJ, 384, p. 656. , 10.1086/170907 Williams, G.P., (2002) RScI, 73, p. 1461 Williams, G.P., (2006) RPPh, 69, p. 301 Williams, G.P., Hirschmugl, C.J., Kneedler, E.M., (1989) PhRvL, 62, p. 261 Zirin, H., Tanaka, K., (1973) SoPh, 32, p. 173