dc.creatorPeres Pedro L.D.
dc.creatorSouza S.R.
dc.creatorGeromel J.C.
dc.date1992
dc.date2015-06-30T14:21:30Z
dc.date2015-11-26T14:43:05Z
dc.date2015-06-30T14:21:30Z
dc.date2015-11-26T14:43:05Z
dc.date.accessioned2018-03-28T21:50:59Z
dc.date.available2018-03-28T21:50:59Z
dc.identifier780302109
dc.identifierProceedings Of The American Control Conference. Publ By American Automatic Control Council, Green Valley, Az, United States, v. 4, n. , p. 2916 - 2920, 1992.
dc.identifier7431619
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0027090575&partnerID=40&md5=d35ef6282ef3c89442def5a7b32beec5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/99486
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/99486
dc.identifier2-s2.0-0027090575
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1251524
dc.descriptionThis paper proposes a method based on convex programming to calculate a guaranteed cost stabilizing state feedback control, for both continuous-time and discrete-time uncertain linear systems. In the uncertain case, it provides a guaranteed cost, i.e., an upper bound for the H2 norm of the closed-loop transfer function. In the absence of uncertainties, the numerical algorithm furnishes, under certain conditions, exactly the same optimal control gain obtained by the classical Linear Quadratic Problem. Thanks to the convexity of the proposed conditions, additional constraints can be easily taken into account as, for instance, robustness against actuators failure. Examples illustrate the theoretical results.
dc.description4
dc.description
dc.description2916
dc.description2920
dc.languageen
dc.publisherPubl by American Automatic Control Council, Green Valley, AZ, United States
dc.relationProceedings of the American Control Conference
dc.rightsfechado
dc.sourceScopus
dc.titleOptimal H2 Control For Uncertain Linear Systems
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución