dc.creatorBruno-Alfonso A.
dc.creatorReyes-Gomez E.
dc.creatorCavalcanti S.B.
dc.creatorOliveira L.E.
dc.date2008
dc.date2015-06-30T19:18:46Z
dc.date2015-11-26T14:41:52Z
dc.date2015-06-30T19:18:46Z
dc.date2015-11-26T14:41:52Z
dc.date.accessioned2018-03-28T21:49:07Z
dc.date.available2018-03-28T21:49:07Z
dc.identifier9780819473790
dc.identifierProceedings Of Spie - The International Society For Optical Engineering. , v. 7138, n. , p. - , 2008.
dc.identifier0277786X
dc.identifier10.1117/12.818014
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-66749141360&partnerID=40&md5=883f934b55e7705d6241fa8428b5ea16
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105704
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105704
dc.identifier2-s2.0-66749141360
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1251038
dc.descriptionThe photonic modes of Thue-Morse and Fibonacci lattices with generating layers A and B, of positive and negative indices of refraction, are calculated by the transfer-matrix technique. For Thue-Morse lattices, as well for periodic lattices with AB unit cell, the constructive interference of reflected waves, corresponding to the zeroth-order gap, takes place when the optical paths in single layers A and B are commensurate. In contrast, for Fibonacci lattices of high order, the same phenomenon occurs when the ratio of those optical paths is close to the golden ratio. In the long wavelength limit, analytical expressions defining the edge frequencies of the zeroth order gap are obtained for both quasi-periodic lattices. Furthermore, analytical expressions that define the gap edges around the zeroth order gap are shown to correspond to the <5 > =0 and <μ> = 0 conditions. © 2008 SPIE.
dc.description7138
dc.description
dc.description
dc.description
dc.descriptionIstrate, E., Sargent, E.H., (2006) Rev. Mod. Phys, 78, p. 455
dc.descriptionVeselago, V.G., (1968) Sov. Phys.-Usp, 10, p. 509
dc.descriptionEdwards, B., Alú, A., Young, M.E., Silveirinha, M., Engheta, N., (2008) Phys. Rev. Lett, 100, p. 033903
dc.descriptionLi, J., Zhou, L., Chan, C.T., Sheng, P., (2003) Phys. Rev. Lett, 90, p. 083901
dc.descriptionJiang, H., Chen, H., Li, H., Zhang, Y., Zhu, S., (2003) Appl. Phys. Lett, 83, p. 5386
dc.descriptionYuan, Y., Ran, L., Huangfu, J., Chen, H., Shen, L., Kong, J.A., (2006) Optics Express, 14, p. 2220
dc.descriptionDaninthe, H., Foteinopoulou, S., Soukoulis, C.M., (2006) Photonics and Nanostructures - Fundamentals and Applications, 4, p. 123
dc.descriptionCavalcanti, S.B., de Dios-Leyva, M., Reyes-Gómez, E., Oliveira, L.E., (2006) Phys. Rev. B, 74, p. 153102
dc.descriptionCavalcanti, S.B., de Dios-Leyva, M., Reyes-Gómez, E., Oliveira, L.E., (2007) Phys. Rev. E, 75, p. 026607
dc.descriptionLei, H., Chen, J., Nouet, G., Feng, S., Gong, Q., Jiang, X., (2007) Phys. Rev. B, 75, p. 205109
dc.languageen
dc.publisher
dc.relationProceedings of SPIE - The International Society for Optical Engineering
dc.rightsaberto
dc.sourceScopus
dc.titleBand-edge States Of The Zeroth - Order Gap In Quasi-periodic Photonic Superlattices
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución